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Preface

Algebraic curves are the graphs of polynomial equations in two vari-
ables, such as y® + 5xy? = x% + 2xy. This book introduces the study of al-
gebraic curves by focusing on curves of degree at most 3—lines, conics,
and cubics—over the real numbers. That keeps the results tangible and
the proofs natural. The book is designed for a one-semester class for
undergraduate mathematics majors. The only prerequisite is first-year
calculus.

Algebraic geometry unites algebra, geometry, topology, and analysis,
and it is one of the most exciting areas of modern mathematics. Unfortu-
nately, the subject is not easily accessible, and most introductory courses
require a prohibitive amount of mathematical machinery. We avoid this
problem by basing proofs on high school algebra instead of linear alge-
bra, abstract algebra, or complex analysis. This lets us emphasize the
power of two fundamental ideas, homogeneous coordinates and intersec-
tion multiplicities.

Every line can be transformed into the x-axis, and every conic can
be transformed into the parabola y = x*. We use these two basic facts
to analyze the intersections of lines and conics with curves of all degrees,
and to deduce special cases of Bezout's Theorem and Noether's Theo-
rem. These results give Pascal’'s Theorem and its corollaries about poly-
gons inscribed in conics, Brianchon’s Theorem and its corollaries about
polygons circumscribed about conics, and Pappus’ Theorem about hexa-
gons inscribed in lines. We give a simple proof of Bezout's Theorem for
curves of all degrees by combining the result for lines with induction on
the degrees of the curves in one of the variables. We use Bezout’s Theo-
rem to classify cubics. We introduce elliptic curves by proving that a cu-

vii



viii Preface

bic becomes an abelian group when collinearity determines addition of
points; this fact plays a key role in number theory, and it is the starting
point of the 1995 proof of Fermat's Last Theorem.

The 2nd Edition differs from the 1st in Chapter IV by using power se-
ries to parametrize curves. We apply parametrizations in two ways: to
derive the properties of intersection multiplicities employed in Chapters
I-1IT and to extend the duality of curves and envelopes from conics to
curves of higher degree.

The 2nd Edition also has a simpler proof of duality for conics in The-
orem 7.3. There are new Exercises 5.7, 6.21-6.23, 7.17-7.23, 11.21, and
11.22 on conics, foci, and director circles.

A one-semester course can skip Sections 13 and 16, whose results are
not needed in other sections. The more technical parts of Sections 14
and 15 can be covered lightly.

The exercises provide practice in using the results of the text, and
they outline additional material. They can be homework problems when
the book is used as a class text, and they are optional otherwise.

I am greatly indebted to Harry D’Souza for sharing his expertise, to
Richard Alfaro for generating figures by computer, to Richard Belshoff
for correcting errors, and to Renate McLaughlin, Kenneth Schilling, and
my late brother Michael Bix for reviewing the manuscript. I am also
grateful to the students at the University of Michigan-Flint who tried
out the manuscript in classes.

Robert Bix
Flint, Michigan
November 2005



 Intersections
~ of Curves

CHAPTER

Introduction and History
Introduction

An algebraic curve is the graph of a polynomial equation in two variables
x and y. Because we consider products of powers of both variables, the
graphs can be intricate even for polynomials with low exponents. For
example, Figure 1.1 shows the graph of the equation

7% = cos 20

in polar coordinates. To convert this equation to rectangular coordinates
and obtain a polynomial in two variables, we multiply both sides of the
equation by r? and use the identity cos 20 = cos? 0 — sin? 0. This gives
r* = 1% cos? O — r*sin? 0. (1)
We use the usual substitutions r* = x* + y%, rcos = x, and rsinf = y to
rewrite (1) as
(XZ +y2)2 — XZ _yZ.

Multiplying this polynomial out and collecting its terms on the left gives

M2y 4yt -4yt =o0. (2)
Thus Figure 1.1 is the graph of a polynomial in two variables, and so it is
an algebraic curve.

We add two powerful tools for studying algebraic curves to the famil-
iar techniques of precalculus and calculus. The first is the idea that

1
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Figure 1.1

curves can intersect repeatedly at a point. For example, it is natural to
think that the curve in Figure 1.1 intersects the x-axis twice at the origin
because it passes through the origin twice. We develop algebraic tech-
niques in Section 1 for computing the number of times that two algebraic
curves intersect at the origin.

The second major tool for studying algebraic curves is the system of
homogeneous coordinates, which we introduce in Section 2. This is a
bookkeeping device that lets us study the behavior of algebraic curves
at infinity in the same way as in the Euclidean plane. Erasing the distinc-
tion between points of the Euclidean plane and those at infinity simpli-
fies our work greatly by eliminating special cases.

We combine the ideas of Sections 1 and 2 in Section 3. We use homo-
geneous coordinates to determine the number of times that two alge-
braic curves intersect at any point in the Euclidean plane or at infinity.
We also introduce transformations, which are linear changes of coordi-
nates. We use transformations throughout our work to simplify the equa-
tions of curves.

We focus on the intersections of lines and other curves in Section 4.
If a line [ is not contained in an algebraic curve F, we prove that the
number of times that [ intersects F, counting multiplicities, is at most
the degree of F. This introduces one of the main themes of our work:
the geometric significance of the degree of a curve. We also characterize
tangent lines in terms of intersection multiplicities.

History

Greek mathematicians such as Euclid and Apollonius developed geome-
try to an extraordinary level in the third century B.c. Their algebra,
however, was limited to verbal combinations of lengths, areas, and
volumes. Algebraic symbols, which give algebraic work its power, arose
only in the second half of the 1500s, most notably when Francois
Vieta introduced the use of letters to represent unknowns and general
coefficients.

Geometry and algebra were combined into analytic geometry in the
first half of the 1600s by Pierre de Fermat and René Descartes. By assert-
ing that any equation in two variables could be used to define a curve,
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they expanded the study of curves beyond those that could be con-
structed geometrically or mechanically.

Fermat found tangents and extreme points of graphs by using essen-
tially the methods of present-day calculus. Calculus developed rapidly in
the latter half of the 1600s, and its great power was demonstrated by
Isaac Newton and Gottfried Leibniz. In particular, Newton used implicit
differentiation to find tangents to curves, as we do after Theorem 4.10.

Apart from its role in calculus, analytic geometry developed gradually.
Analytic geometers concentrated at first on giving analytic proofs of
known results about lines and conics. Newton established analytic geom-
etry as an important subject in its own right when he classified cubics, a
task beyond the power of synthetic —that is, nonanalytic—geometry. We
derive one of Newton's classifications of cubics in Chapter III.

While Fermat and Descartes were founding analytic geometry in the
first half of the 1600s, Girard Desargues was developing a new branch of
synthetic geometry called projective geometry. Renaissance artists and
mathematicians had raised questions about drawing in perspective.
These questions led Desargues to consider points at infinity and projec-
tions between planes, concepts we discuss at the start of Section 2. He
used projections between planes to derive a remarkable number of theo-
rems about lines and conics. His contemporary, Blaise Pascal, took up
the projective study of conics, and their work was continued in the late
1600s by Philippe de la Hire.

Projective geometry languished in the 1700s as calculus and its appli-
cations dominated mathematics. Work on algebraic curves focused on
their intersections, although multiple intersections were not analyzed
systematically until the nineteenth century, as we discuss at the start of
Chapter IV. We introduce intersection multiplicities in Section 1 so that
we can automatically handle the special cases of theorems that arise
from multiple intersections.

At the start of the 1800s, Gaspard Monge inspired a revival of syn-
thetic geometry. His student Jean-Victor Poncelet championed synthetic
projective geometry as a branch of mathematics in its own right. Mathe-
maticians argued vigorously about the relative merits of synthetic and
analytic geometry, although each subject actually drew strength from
the other.

Analytic geometry was revolutionized when homogeneous coordi-
nates were used to coordinatize the projective plane. Augustus Mobius
introduced one system of homogeneous coordinates, barycentric coordi-
nates, in 1827. He associated each point P in the projective plane with
the triples of signed weights to be placed at the vertices of a fixed trian-
gle so that P is the center of gravity. In 1830, Julius Pliicker introduced
the system of homogeneous coordinates that is currently used, which we
introduce in Section 2.

Throughout the 1830s, Pliicker used homogeneous coordinates to
study curves. He obtained remarkable results, which we discuss in the
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History for Chapter IV. Together with Riemann’s work, which we dis-
cuss at the start of Chapter III, Pliicker’s results provided much of the in-
spiration for the subsequent development of algebraic geometry.

Mobius and Plicker also considered maps of the projective plane
produced by invertible linear transformations of homogeneous coordi-
nates. These are the transformations we discuss in Section 3. Much of
nineteenth-century algebraic geometry was devoted to studying invari-
ants, the algebraic combinations of coordinates of n-dimensional space
that are preserved by invertible linear transformations. Founded
by George Boole in 1841, invariant theory was developed in the latter
half of the 1800s by such notable mathematicians as Arthur Cayley,
James Sylvester, George Salmon, and Paul Gordan. Methods of abstract
algebra came to dominate invariant theory when they were introduced
by David Hilbert in the late 1800s and Emmy Noether in the early
1900s.

§1. Intersections at the Origin

An important way to study a curve is to analyze its intersections with
other curves. This analysis leads to the idea of two curves intersecting
more than once at a point. We devote this section to studying multiple
intersections at the origin, where the algebra is simplest.

A polynomial f or f(x, y) in two variables is a finite sum of terms of the
form ex'y/, where the coefficient e is a real number and the exponents
i and j are nonnegative integers. We say that a term ex'y/ has degree i + j
and that the degree of a nonzero polynomial is the maximum of the de-
grees of the terms with nonzero coefficients. For example, the six terms
of the polynomial

Yy —2x%y +7xy — 3x* +7x + 5

have respective degrees 3, 4, 2, 2, 1, and 0, and the degree of the poly-
nomial is 4. We work over the real numbers exclusively until we introduce
the complex numbers in Section 10.

We define an algebraic curve formally to be a polynomial f(x, y) in two
variables, and we picture the algebraic curve as the graph of the equa-
tion f(x,y) = 0 in the plane. We abbreviate the term “algebraic curve”
to “curve” because the only curves we consider are algebraic; that is,
they are given by a polynomial equation in two variables. We refer both
to the “curve f(x,y)” and to the “curve f(x,y) = 0,” and we even rewrite
the equation f(x,y) = 0 in algebraically equivalent forms. For example,
we refer to the same curve as y — x%, y — x> = 0, and y = x*. Of course,
we say that the curve f(x, y) contains a point (a, b) and that the point lies
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Figure 1.1

Figure 1.2

on the curve when f(a,b) = 0. When the polynomial f(x,y) is nonzero,
we refer to its degree as the degree of the curve f(x,y) = 0.

One reason we define a curve formally to be a polynomial rather than
its graph is to keep track of repeated factors. We imagine that the points
of the graph that belong to repeated factors are themselves repeated. For
example, we think of the curve

(y =24y —»)°
as two copies of the parabola y = x? and three copies of the line y = x.
This idea helps the geometry reflect the algebra.

We turn now to the idea that curves can intersect more than once at a
point. As we noted in the chapter introduction, it is natural to think that
the curve in Figure 1.1 intersects the x-axis twice at the origin because
the curve seems to pass through the origin twice.

For a different type of example, note that two circles with overlapping
interiors intersect at two points (Figure 1.1). As the circles move apart,
their two points of intersection draw closer together until they coalesce
into a single point P (Figure 1.2). Accordingly, it seems natural to think
that the circles in Figure 1.2 intersect twice at P.

Similarly, any line of positive slope through the origin intersects
the graph of y = x® in three points (Figure 1.3). As the line rotates about
the origin toward the x-axis, the three points of intersection move to-
gether at the origin, and they all coincide at the origin when the line
reaches the x-axis. Accordingly, it is natural to think that the curve
y = x3 intersects the x-axis three times at the origin.

Let O be the origin (0,0). We assign a value Io(f,g) to every pair
of polynomials f and g. We call this value the intersection multiplicity of
f and g at O, and we think of it as the number of times that the curves
f(x,y) =0 and g(x, y) = 0 intersect at the origin.
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Figure 1.3

What properties should the assignment of the values Io(f,g) have?
The proof of Theorem 1.7 will show that we need to allow for the possi-
bility that curves intersect infinitely many times at the origin. We expect
the following result, where the symbol co denotes infinity:

Property 1.1
Io(f, g) is a nonnegative integer or oo. O

The order in which we consider two curves should not affect the num-
ber of times they intersect at the origin. This suggests the next property:

Property 1.2
Io(f,g) = Io(g. f). O

If either of two curves fails to contain the origin, they do not intersect
there, and their intersection multiplicity at the origin should be zero. On
the other hand, if both curves contain the origin, they do intersect there,
and their intersection multiplicity should be at least 1. Thus, we expect
the following property to hold:

Property 1.3
Io(f,g) = 1 if and only if f and g both contain the origin. O

Of course, we consider oo to be greater than every integer, so that
Property 1.3 allows for the possibility that Io(f,g) = o0 when f and g
both contain the origin.

The y- and x-axes seem to intersect as simply as possible at the origin,
and so we expect them to intersect only once there. Since the axes have
equations x = 0 and y = 0, we anticipate the following property:

Property 1.4
IO<X> y> =1 U
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Let f, g, and h be three polynomials in two variables, and let (a, b) be
a point. The equations

fla,b)=0  and  gla,b) =0 (1)
imply the equations
fla,b) =0 and  g(a,b) + f(a,b)h(a,b) = 0. (2)

Conversely, the equations in (2) imply the equations in (1). In short, f
and g intersect at (a, b) if and only if f and g + fh intersect there. Gener-
alizing this to multiple intersections at the origin suggests the following:

Property 1.5
Io(f,8) = Io(f,g+ fh). O

One reason to expect that Property 1.5 holds for multiple as well
as single intersections is the discussion accompanying Figures 1.1-1.3,
which suggests that we can think of a multiple intersection of two curves
as the coalescence of single intersections.

The equations f(a,b) =0 and g(a,b)h(a,b) =0 hold if and only if
either f(a,b) =0 =g(a,b) or f(a,b) =0 = h(a,b). Thus, f and gh inter-
sect at a point if and only if either f and g intersect there or f and h
intersect there. That is, we get the points where f and gh intersect by
combining the intersections of f and g with the intersections of f and
h. As above, we expect this property to extend to multiple intersections
because we think of a multiple intersection as the coalescence of single
intersections. Thus, we expect the following:

Property 1.6
IO(f9gh) :Io<f>g> +Io(fa h) ]

The value of Ip(f, g) does not depend on the order of f and g (by Prop-
erty 1.2). Thus, Property 1.5 states that the intersection multiplicity of
two curves at the origin remains unchanged when we add a multiple of
either curve to the other. Likewise, Property 1.6 shows that we can break
up a product of two polynomials in either position of Ip(_, ).

Property 1.6 reinforces the idea that repeated factors in a polynomial
correspond to repeated parts of the graph. For example, Properties 1.2,
1.4, and 1.6 show that

Io(x*, y) = 2Io(x, y) = 2.

When we think of x> = 0 as two copies of the line x = 0, it makes sense
that x> = 0 intersects the line y = 0 twice at the origin, because each of
the two copies of x = 0 intersects y = 0 once.
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We use the term intersection properties to refer to Properties 1.1-1.6
and further properties introduced in Sections 3, 11, and 12. We must
prove that we can assign values Ip(f, g) for all pairs of curves f and g so
that Properties 1.1-1.6 hold. We postpone this proof until Chapter IV so
that we can proceed with our main task, using intersection properties to
study curves. Of course, the results we obtain depend on our proving the
intersection properties in Chapter IV.

In the rest of this section, we show how Properties 1.1-1.6 can be used
to compute the intersection multiplicity of two curves at the origin. The
discussion accompanying Figures 1.1-1.3 suggests that Ip(f, g) measures
how closely the curves f and g approach each other at the origin. When
f is a factor of g, the graph of g = 0 contains the graph of f = 0. Thus, we
are led to expect the following result:

Theorem 1.7
If f and g are polynomials such that f is a factor of g and the curve f =0
contains the origin O, then Io(f, g) is co.

Proof

Consider first the case where g is the zero polynomial 0. (The theorem
includes this case because the zero polynomial has every polynomial f
as a factor, since 0 = f - 0.) Since Ip(f,0) > 1 (by Property 1.3), it follows
for every positive integer n that

n < nlp(f,0) = Ip(f,0") (by Property 1.6)
- IO(fa O)

Because this holds for every positive integer n, Io(f, 0) must be co.
In general, if g is any polynomial that has f as a factor, we can write
g = fh for a polynomial h. Then we have

IO(f9 g) = IO(f: fh)
=Io(f,fh— fh) (by Property 1.5)
= IO()C’ 0) = 00,
by the previous paragraph. O

The proof of Theorem 1.7 shows why we needed to allow infinite
intersection multiplicities in Property 1.1.

The following result shows that we can disregard factors that do not
contain the origin when we compute intersection multiplicities at the
origin:

Theorem 1.8
If f, g, and h are curves and g does not contain the origin, we have

IO(fa gh> = IO(fa h)
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Proof
Properties 1.6, 1.3, and 1.1 show that

IO(fa gh) = Io(f, g> + IO(f’ h) = Io(fa h)a

since Io(f, g) = 0 because g does not contain the origin. O

To illustrate the use of the intersection properties, we find the num-
ber of times that y — x? and y® + 2xy + A% intersect at the origin. We use
Property 1.5 to eliminate y from the second polynomial by subtracting
a suitable multiple of the first. To find this multiple, we use long divi-
sion with respect to y to divide the first polynomial into the second, as
follows:

¥+ Xy + 2x + x*

y—x2> e + 2xy + 5
P y?
x2y? + 2xy
2yt — iy
(2x + xMy + X8

Qx+xYy — 223 — °

2x3 + 2x6.

Each step of the division eliminates the highest remaining power of y
until only a polynomial in x is left: the three steps of the division elimi-
nate the y°, y?, and y terms. The division shows that

Y4 2xy + % = (y — ) (Y + Xy 4+ 2x + 1) 4 2x° + 240, (3)

Thus, we are left with the remainder 2x® + 2x, which does not contain
Y, when we subtract a multiple of y — x? from y> + 2xy + x5. It follows
that

Io(y — X%, y° + 2xy + 2%) = Ip(y — x%, 2x° + 2x°)
(by (3) and Property 1.5)
= Io(y —#*,x*(2+ 2x%))
=Io(y — x*,x%*) (by Theorem 1.8)
= 3Ip(y — x*,x) (by Property 1.6)
= 3Io(y, x)
(by Properties 1.2 and 1.5, since y — x? differs from y by a multiple of x)
=3 (by Properties 1.2 and 1.4).

Thus, y = x? intersects y* + 2xy + x% = 0 three times at the origin.
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Of course, a polynomial p(x) in one variable x is a finite sum of terms
of the form ex!, where ¢ is a real number and i is a nonnegative integer.
By generalizing the previous paragraph, we can find the number of
times that a curve of the form y = p(x) intersects any curve g(x,y) =0
at the origin. This is easy to do because we do not need long division to
find the remainder when g(x, y) is divided by y — p(x) with respect to y.
The next theorem shows that the remainder is g(x, p(x)), the result of
substituting p(x) for y in g(x,y). For example, we did not have to use
long division above to find the remainder when y® + 2xy + x° is divided
by y — x%. All we needed to do was substitute x? for y in y® 4 2xy + x° to
find that the remainder is (x¥?)3 4+ 2x(x?) 4+ x5 = 2x3 4+ 2x5, as before.

Theorem 1.9
Let p(x) and g(x,y) be polynomials.

(i) If we use long division with respect to y to divide g(x, y) by y — p(x), the
remainder is g(x, p(x)). This means that there is a polynomial h(x, y)
such that

8% y) = (y — p(x))h(x, y) + &(x, p(x)). (4)
(i) In particular, y — p(x) is a factor of g(x, y) if and only if g(x, p(x)) is the

zero polynomial.

Proof

(i) Let h(x, y) be the quotient when we use long division with respect to y
to divide y — p(x) into g(x, y). The remainder is a polynomial r(x) in x be-
cause each step of the division eliminates the highest remaining power
of y. We have

8%, y) = (y — p(x))h(x, y) + r(x). (5)

Substituting p(x) for y in (5) makes y — p(x) zero and shows that

g(x, plx)) = r(x).

Together with (5), this gives (4).
(ii) If g(x, p(x)) is the zero polynomial, (4) shows that y — p(x) is a
factor of g(x, y). Conversely, if y — p(x) is a factor of g(x, y), we can write

g%, y) = (y — p(x)k(x, y)

for a polynomial k(x, y). Substituting p(x) for y shows that g(x, p(x)) is
Z€ero. [l

We obtain a familiar result from Theorem 1.9 if we assume that x does
not appear in p or g. Then p is a real number b, and g is a polynomial
g(y) in y. When we divide g(y) by y — b, the quotient is a polynomial
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h(y) in y, and the remainder is a real number r. This gives the following
special case of Theorem 1.9, which we note for later reference:

Theorem 1.10
Let g(y) be a polynomial in y, and let b be a real number.

(i) The remainder when we divide g(y) by y — b is g(b). This means that
there is a polynomial h(y) such that

8(y) =(y —Db)h(y) +g(b).
(ii) In particular, y — b is a factor of g(y) if and only if g(b) = 0. O

We can now find the intersection multiplicity at the origin of curves of
the form y = p(x) and g(x,y) = 0. By Theorem 1.9, we can eliminate all
powers of y from g(x,y) by subtracting a suitable multiple of y — p(x),
and we are left with g(x, p(x)). We can then use the intersection proper-
ties to find the intersection multiplicity. This gives the following result:

Theorem 1.11

Let y = p(x) and g(x,y) = 0 be curves. Assume that y = p(x) contains the
origin and that y — p(x) is not a factor of g(x,y). Then the number of times
that y = p(x) and g(x,y) = 0 intersect at the origin is the smallest degree of
any nonzero term of g(x, p(x)).

Proof

Since y — p(x) is not a factor of g(x, y), g(x, p(x)) is nonzero (by Theorem
1.9 (ii)). If s is the smallest degree of any nonzero term of g(x, p(x)), we
can factor x° out of every term of g(x, p(x)) and write

g(x, p(x)) = x°q(x)

for a polynomial g(x) whose constant term is nonzero.
Theorem 1.9 (i) shows that

g% y) = (y — p(x))h(x, y) + x°q(x) (6)

for a polynomial h(x,y). Subtracting the product of y — p(x) and h(x, y)
from g(x, y) gives

Io(y — p(%), 8(%, y)) = Io(y — p(x),x°q(x))
(by (6) and Property 1.5)
= Io(y — p(x),x°)

(by Theorem 1.8, since the fact that g(x) has nonzero constant term
implies that the plane curve g(x) = 0 does not contain the origin)

= slo(y — p(x),X) (7)
(by Property 1.6).
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The assumption that y = p(x) contains the origin means that p(0) = 0.
Thus, the polynomial p(x) has no constant term, and so we can factor x
out of p(x) and write

p(x) = xt(x) (8)
for a polynomial t(x). Adding x times t(x) to y — p(x) shows that
Io(y — p(x), x) = Io(y, )
(by (8) and Properties 1.2 and 1.5)
=1

(by Properties 1.2 and 1.4). Together with (7), this shows that y = p(x)
and g(x,y) = 0 intersect s times at the origin. O

After the proof of Theorem 1.8, it took some effort to find the number
of times that y — x? and y® + 2xy + x° intersect at the origin. Theorem
1.11 makes it easy to do so.

ExampLE 1.12
How many times do the curves y = x? and y® + 2xy + x® = 0 intersect at
the origin?

Solution
Substituting x¥* for y in y* + 2xy + x° gives

(x%)3 4 2x(x?) + 2% = 2x% + 245,

Since this is nonzero, y — x? is not a factor of y* + 2xy + x% (by Theorem
1.9(ii)). Moreover, y = x? contains the origin, and so we can apply
Theorem 1.11. The smallest power of x appearing in 2x* + 2x% is x%, and
so the intersection multiplicity is 3, by Theorem 1.11. O

Theorem 1.11 makes it easy to determine the number of times that
two curves intersect at the origin when the equation of one curve ex-
presses y as a polynomial in x. This result enables us to determine
the intersection multiplicities of lines and conics with other curves in
Sections 4 and 5. Note that we can check the condition in Theorem 1.11
that y — p(x) is not a factor of g(x,y) by checking that g(x, p(x)) is
nonzero (by Theorem 1.9(ii)).

Let p(x) be a nonzero polynomial without a constant term. Since
p(0) = 0, the curve y = p(x) contains the origin. Since p(x) is nonzero,
y — p(x) is not a factor of y. Thus, if we take g(x, y) in Theorem 1.11 to
be the polynomial y, we see that the intersection multiplicity of y = p(x)
and the x-axis y = 0 at the origin is the exponent of the smallest power of
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x appearing in p(x). For example, both of the curves
y=x'—5x+7x* and y=7x* (9)

intersect the x-axis twice at the origin. It makes sense that these inter-
section multiplicities are equal because x* and x* approach zero faster
than x? as x goes to zero, and so both curves in (9) approach the x-axis
at the origin in essentially the same way.

The previous paragraph shows that, for any positive integer n, y = x"
intersects the x-axis y = 0 n times at the origin. This reflects the fact that
y = x" approaches the x-axis near the origin with increasing closeness
as n grows. In particular, y = x% intersects the x-axis three times at the
origin, which reflects the discussion accompanying Figure 1.3.

Theorem 1.11 determines the number of times that two curves inter-
sect at the origin when the equation of one curve expresses y as a poly-
nomial in x. On the other hand, we can find the number of times that
any two curves intersect at the origin by applying Properties 1.1-1.6
and Theorems 1.7 and 1.8. The idea is to use Properties 1.5 and 1.6 to
eliminate the highest power of y appearing in the equations of the
curves. Repeating this until y has been eliminated from one of the equa-
tions gives the intersection multiplicity.

We illustrate this technique with an example. Note that the value of
an intersection multiplicity remains unchanged if we add a multiple of
one of the curves to the other (by Properties 1.2 and 1.5), but the inter-
section multiplicity can change if we multiply one of the two curves by a
third (by Properties 1.2 and 1.6).

ExampLE 1.13
How many times do the curves y® + 2x°> = 0 and xy? + y — 3% = 0 inter-
sect at the origin?

Solution

Although we can solve the first equation for y over the real numbers as
y = —2'/3x5/3 this does not express y as a polynomial in x, and so we
cannot apply Theorem 1.11. Instead, we repeatedly eliminate the high-
est power of y in the equations of the curves.

The highest power of y in the two given equations is y°. We can elim-
inate the y® term by multiplying the first equation by x and subtracting y
times the second equation. We use Properties 1.2 and 1.6 to evaluate the
effect of multiplying the first equation by x:

Io(y® + 2x°, xy* + y — 3x°)
= Io(xy® + 2x° xy? +y — 3x%) — In(x, xy* +y — 3x%)
(by Properties 1.2 and 1.6)
= Io(xy® + 2x°% xy? +y — 3x°) — In(x, y)
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(multiplying x by y? — 3x% to get xy? — 3x3, and subtracting this from
xy? 4+ y — 3x%, by Property 1.5)
=Io(xy® +2x°% xy* +y —3x*) — 1

(by Property 1.4). We can eliminate the y* term by subtracting y times
the second polynomial from the first. By Properties 1.2 and 1.5, this gives

Io(xy® + 2x5 — y(xy? +y — 3x%), x> +y — 3x%) — 1
= Io(—y* + 3x%y + 2%, x> + y — 3x%) — 1.

The next step is to eliminate one of the two y? terms. The easiest way
to do this is to add x times the first polynomial to the second. This gives

Io(—y* +3x%y + 2x° xy* +y — 3x° + x(—y* + 3x°y + 2x%)) — 1
(by Property 1.5)
= Io(—y* + 3x%y + 2x°, (3x* + 1)y + 2¢" — 3x%) — 1.

We eliminate the remaining y? term by multiplying the first poly-
nomial by 3x* 4 1 and adding y times the second polynomial. The curve
3x* 41 =0 in the plane does not contain the origin (and is, in fact,
empty). Thus, the value of the intersection multiplicity is unchanged
if we multiply the first polynomial by 3x* +1 (by Property 1.2 and
Theorem 1.8) and obtain

Io(—(3x* + 1)y* + 3x*(3x* + 1)y + 2x°(3x* 4 1),
(Bx* + 1)y +2¢" —3x%) —1
= Io(—(3x* + 1)y* + (9" + 3x%)y + 6x'° 4 25,
(Bx* + 1)y + 2x" — 3x%) — 1.

Adding y times the second polynomial to the first eliminates the y? term,
as desired, giving

Io(11x7y + 6x10 4 2x5, (3x* + 1)y + 2" — 3x%) — 1 (10)

(by Properties 1.2 and 1.5).
Factoring x° out of the first polynomial gives

Io(x°(11xy + 6x* 4+ 2), (3x* + 1)y + 2x" — 3x%) — 1
= Io(x%, (3x* + 1)y +2¢" —3x%) —1

(by Property 1.2 and Theorem 1.8, since the curve 1lxy +6x*4+2 =0
does not contain the origin)

= 6Io(x, (3x* + 1)y + 2¢" — 3x%) — 1

(by Properties 1.2 and 1.6). Using Property 1.5 to drop the terms
3x*y 4+ 2x7 — 3x3, which are multiples of x, leaves 6Iy(x,y) — 1, which
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equals 5 (by Property 1.4). The two given curves intersect five times at
the origin. O]

We can often simplify the work of computing intersection multi-
plicities by noticing that one of the polynomials factors and applying
Property 1.6 or Theorem 1.8. For instance, by factoring x° out of the first
polynomial in (10), we saved ourselves the work of using Property 1.5 to
eliminate the y term. It is also worth noting that it is sometimes easier to
work on eliminating powers of x rather than y.

The technique of eliminating a variable, which we illustrated in Ex-
ample 1.13, lies at the heart of the study of algebraic curves. We use
this technique to prove Bezout's Theorem 11.5, which determines how
many times two curves intersect over the complex numbers.

We have not yet considered intersections of curves at points other
than the origin. We postpone this until Section 3 so that we can use
homogeneous coordinates to treat intersections at infinity at the same
time as intersections in the Euclidean plane. We introduce homogeneous
coordinates in the next section.

Exercises

1.1. How many times do the two given curves intersect at the origin?
(a) y=x%and y' +6x3y+x® =0.

(b) y==x%—2xand y? + 5y = 4x°.

(c) y=x*+xandy?=3x%y+x%

(d) x*+x+y=0andy® = 3x%y+ 2x>.
(e) y*+x*y—x*=0andy?+x+’y+2x=0.
(f) y® =x%and y? = A°.

(g) y'=x%and x?y® —y?>+2¥" =0.
(h) xy?>+y—x*=0and y® = x*.

(i) y® ==x%and xy =y + x%.

(j) y® =% and xy? = 4y + X°.

(k) y® =% and x%y = 2y% + X°.

(1) y> =" and y?> = x>

(m) y? =x%and y® — 4y +x* = 0.

(n) y®=2x*and ¥*y? +y—x*=0.

(o) xy'+y®==x*and y® +x* =xy.

1.2. Consider the curve and the numbers s and t given in each part of this exer-
cise. Show that there are s lines through the origin that intersect the curve
more than t times there and that all other lines through the origin intersect
the curve exactly t times there. Draw the curve and the s exceptional lines,
showing that these are the lines through the origin that best approximate
the curve there. In drawing the curve, it may be helpful to use polar coor-
dinates or curve-sketching techniques from first-year calculus.
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1.3.

1.4.

1.5.

1.6.

1.7.

1.8.

1.9.

I. Intersections of Curves

(a) y=x%—2x,s=1,t=1.

b) y=x%,s=1,t=

() y¥*=A8s=1,t=2.

(d) y?=x'+4x s=2t=2.
() y?=x'—4x% s=0,t=2.
(f) ¥ +x2y° =y s=1,t=2.
(g) X*y>=x*>—y*, s=2,t=2.
(h) y?=xx—1)?%s=1,t=1.
(i) (P+y?)?=2xy,s=2,t=2.
(i) F+y?)?=x2s=2,t=3.
(k) (2 +y*)?=x*(x+y),s=2,t=3.
N -y =xy,s=2,t=2.
(m) x* —y* =xy, s =2,t=2.

Show that the graph of the equation r = sin(30) in polar coordinates corre-
sponds to a curve f(x,y) = 0 of degree 4. Follow the directions of Exercise
1.2 for this curve, with s = 3 and t = 3.

Let C and D be two different circles through the origin, and assume that the
center of C lies on the x-axis. Prove that C and D intersect either twice or
once at the origin, depending on whether or not the center of D lies on the
x-axis. (This justifies the discussion accompanying Figures 1.1 and 1.2.)

Does Theorem 1.11 remain true without the assumption that y = p(x) con-
tains the origin? Justify your answer.

Let f(x) and g(x) be polynomials in one variable that have no common fac-
tors of positive degree. Prove that f(x)y + g(x) does not factor as a product
of two polynomials of positive degree.

Let f(x,y) and g(x, y) be polynomials in two variables, and let n be a non-
negative integer. Assume that every term in f(x, y) has degree n and every
term in g(x, y) has degree n + 1. If f(x, y) and g(x, y) have no common fac-
tors of positive degree, prove that f(x, y) + g(x, y) does not factor as a prod-
uct of two polynomials of positive degree.

Let f(x) be a polynomial in one variable. Prove that y? + f(x) factors as a
product of two polynomials of positive degree if and only if f(x) = —g(x)?
for a polynomial g(x).

Let f(x) be a polynomial in one variable. Prove that y* + f(x) factors as a
product of two polynomials of positive degree if and only if f(x) = g(x)3
for a polynomial g(x).

. Let f(x, y) be a polynomial in two variables, and let h(x) be a polynomial in

one variable. Prove that f and h have intersection multiplicity co at the
origin if and only if x is a factor of both f and h.
(As in Example 1.13, one step in evaluating

Io(f(% y), 8(x, y)) (11)
for polynomials f(x, y) and g(x, y) is to replace it with

Io(f(%, y), h(x)g(x, y)) — Io(f(x, y), h(x)) (12)
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for a polynomial h(x) in x alone. This replacement is justified by Property
1.6 unless Io(f(x,y), h(x)) = oo, which means that the quantity in (12) has
indeterminate form oo — oo. In that case, this exercise shows that x is a
factor of f(x,y), and so we can use Properties 1.2 and 1.6 to evaluate (11).
In this way, the techniques of Example 1.13 always apply.)

§2. Homogeneous Coordinates

The study of curves is greatly simplified by considering their behavior
at infinity. This eliminates a number of special cases: for example, it
enables us to study all conic sections—ellipses, parabolas, and hyper-
bolas—simultaneously in Chapter II.

We construct the “projective plane” in this section by adding “points
at infinity” to the familiar Euclidean plane. We define a system of homo-
geneous coordinates for the projective plane, which lets us study curves
at infinity in the same way as in the Euclidean plane. We focus on lines
in the projective plane in this section, and we introduce curves of higher
degree in Section 3.

We start with the familiar coordinate system on three-dimensional
Euclidean space. Specifically, we choose a point O in Euclidean space
to represent the origin (Figure 2.1). We select three mutually perpendic-
ular lines through O to be the x-, y-, and z-axes. We associate the points
on each axis with the real numbers in the usual way, so that O is the
point 0 on each axis. We assign coordinates (a, b, ¢) to a point P in Eucli-
dean space if the planes through P perpendicular to the x-, y-, and z-axes
intersect them at the points a, b, and c, respectively. Of course, this gives
the origin O coordinates (0, 0, 0).

Projections suggest a way to study curves at infinity. Let 2 and 2 be
two planes in Euclidean space that do not contain the origin O. The pro-
jection from 2 to 2 through O maps a point X on £ to the point X’ on 2

(a, b, ¢)

Figure 2.1
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Figure 2.3

where the line through O and X intersects 2 (Figure 2.2). Conversely, a
point X’ on 2 is the image of the point X on 2 where the line through O
and X' intersects 2. In this way, the projection matches up points X and
X' on £ and 2 that lie on lines through O.

There are exceptions, however. When 2 and 2 are not parallel, the
plane through O parallel to 2 intersects £ in a line m (Figure 2.3). If
X is any point of m, the line through O and X is parallel to 2, and so X
has no image on 2. We call m the vanishing line on £ because the points
of m seem to vanish under the projection. In fact, as a point Y on £
approaches m, its image Y’ under the projection moves arbitrarily far
away from the origin on 2. This suggests that points on the vanishing
line of Z project to points at infinity on 2.

Likewise, the plane through O parallel to 2 intersects 2 in a line n,
which we call the vanishing line on 2. If X’ is any point of n, the line
through O and X' is parallel to 2, and we imagine that a point at infinity
on Z projects to X'.

In short, a projection between two planes that are not parallel
matches up the points on the planes, except that points on the vanishing
line of each plane seem to correspond to points at infinity on the other
plane. This suggests that each plane has a line of points at infinity and
that we can study these points by projecting them to ordinary points on
another plane.
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(ta, tb, tc)

(a, b, c)

0

Figure 2.4

Accordingly, in order to study curves at infinity, we consider all
points in Euclidean space except the origin. If X and X’ are two of these
points that lie on a line through the origin O, we think of X and X’ as two
representations of the same point under projection through O, as in
Figure 2.2. That is, we think of all the points except O on each line in
space through O as the same point.

Translating this into coordinates, we consider the triples (a,b,c) of
real numbers except O = (0,0, 0). We think of all the triples (ta, th, tc) as
the same point as t varies over all nonzero real numbers; these are the
triples except O on the line through O and (a, b, c) (Figure 2.4).

We make the following formal definition. The projective plane is the
set of points determined by ordered triples of real numbers (a,b,c),
where a, b, ¢ are not all zero, and where the triples (ta, th, tc) represent
the same point as t varies over all nonzero real numbers (Figure 2.4).
We call the ordered triples homogeneous coordinates. The term “homoge-
neous” indicates that all the triples (ta, tb, tc) represent the same point as
t varies over all nonzero real numbers. For example, if we multiply the
coordinates of (1, —2, 3) by 2, —3, and é, we see that the triples

(13_2>3>’ (27 _4’6>a (_3:6a_9)’ (l _'271)3

represent the same point.

It may seem odd to talk about a plane coordinatized by triples of real
numbers, but the homogeneity of the coordinates effectively reduces the
dimension by 1 from 3 to 2. For instance, if we consider points (a, b, c)
with ¢ # 0, dividing the coordinates by ¢ gives (a/c,b/c,1). Rewriting
these points as (d, e, 1) for real numbers d and e shows that we are con-
sidering a two-dimensional set of points, although triples with last coor-
dinate zero require separate consideration.

Geometrically, we relate the projective and Euclidean planes as fol-
lows. Triples of homogeneous coordinates correspond to lines in space
through the origin O, as in Figure 2.4. Each line in space through O that
does not lie in the plane z = 0 will be represented by the point where it
intersects the plane z = 1 (Figure 2.5). We will identify the lines through
O that lie in the plane z = 0 with the points at infinity of the plane z = 1.
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Figure 2.5

This will show that the projective plane consists of the Euclidean plane
z = 1 together with additional points at infinity.

Algebraically, if ¢ # 0, then 1/c is the one value of t such that the
triple (ta,tb,tc) has last coordinate 1. Setting t =1/c gives the point
(a/c,b/c, 1) in the plane z = 1. Conversely, any point (d, ¢, 1) in the plane
z =1 corresponds to a unique point in the projective plane, the point
with homogeneous coordinates (td, te,t) for all nonzero numbers t. In
this way, we have matched up the points in the projective plane whose
last coordinate is nonzero with the points in the plane z = 1.

We think of the plane z =1 as the Euclidean plane by identifying the
points (x,y,1) and (x,y) of the two planes. Together with the last para-
graph, this matches up the points in the projective plane whose last
homogeneous coordinate is nonzero with the points of the Euclidean
plane. A point in the projective plane that has homogeneous coordinates
(a,b,c) for ¢ # 0 is matched up with the point (a/c, b/c) of the Euclidean
plane. Conversely, a point (d, e) of the Euclidean plane is matched up
with the point of the projective plane that has homogeneous coordinates
(d,e, 1) or, more generally, (td, te, t) for any nonzero number ¢.

We must still consider the points (a, b, 0) in the projective plane whose
last homogeneous coordinate is zero. We call these points at infinity.
If a # 0, 1/a is the one value of t such that the triple (ta, tb,0) has first
coordinate 1. Setting t = 1/a gives the triple (1,b/a,0). We can choose
a # 0 and b so that b/a is any real number s.

The only remaining point at infinity corresponds to the triples of
homogeneous coordinates whose first and third coordinates are both
zero. These triples are (0,b,0), where b # 0. Multiplying by 1/b gives
the coordinates of the point in the unique form (0, 1, 0).

In short, every point in the projective plane can be written in exactly
one way as one of the triples

<d967 1>9 (17870), (07 ]"0)7 (1>
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as d, e, and s vary over all real numbers. The points in the projective
plane whose last homogeneous coordinate is nonzero correspond to the
triples (d, e, 1), which correspond in turn to the points (d, e) of the Eucli-
dean plane. The points in the projective plane that have last homoge-
neous coordinate zero are the points at infinity, and they correspond to
the triples (1,s,0) and (0, 1, 0).

We learn more about the points at infinity by relating them to the
lines in the projective plane. A line in the projective plane is the set of
points whose homogenous coordinates (x, y, z) satisfy an equation

px+qy+rz=0, (2)

where p, q, and r are real numbers that are not all zero. We call (2) the
equation of the line.

It does not matter which triple of homogeneous coordinates of a point
we substitute in (2). If a triple (x, y, z) satisfies (2), we can multiply the
equation by a nonzero number ¢ and obtain the equation

ptx +qty +rtz =0, (3)

which shows that the triple (tx, ty, tz) also satisfies (2).

We can also think of (3) as the result of multiplying the coefficients
p, q, v of (2) by a nonzero number t. Thus, the equivalence of (2) and
(3) shows that a line stays unchanged when we multiply the coefficients
in its equation by a nonzero number.

To understand the lines in the projective plane, first consider the lines
given by (2) with g # 0. Dividing this equation by g and solving for y
gives the equivalent equation

(9 ()

As p, g, and r vary over all real numbers with g # 0, we obtain the
equations
Yy=mx+nz (4)

for all real numbers m and n. The corresponding lines in the Euclidean
plane consist of all points (x, y) such that the triple (x, y, 1) satisfies (4).
This gives the lines

y=mx+n (5)

in the Euclidean plane. As m and n vary over all real numbers, (5) gives
all lines in the Euclidean plane that are not vertical. In short, the lines in
the projective plane given by (2) for g # 0 correspond to the lines in the
Euclidean plane that are not vertical.

Consider next the lines given by (2) with g = 0 and p # 0. Dividing the
equation px + rz = 0 by p and solving for x gives the equation

s
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As v and p vary over all real numbers with p # 0, we obtain the
equations
x=hz (6)

for all real numbers h. The corresponding lines in the Euclidean plane
consist of the points (x,y) such that (x,y, 1) satisfies (6). This gives the
lines

x=h (7)

in the Euclidean plane. As h varies over all real numbers, (7) gives all
vertical lines in the Euclidean plane. Thus, the lines in the projective
plane given by (2) with g = 0 and p # 0 correspond to the vertical lines
in the Euclidean plane.

The last two paragraphs show that the lines in the projective plane
given by (2) when p or g is nonzero correspond to the lines of the Eucli-
dean plane. The only other line in the projective plane is given by (2)
with p =0 =g and r # 0 (since the coefficients p, g, r in (2) are not all
zero). Then (2) becomes rz = 0, and dividing this equation by r gives
z=0. We call the line z = 0 in the projective plane the line at infinity.
Of course, the points (a, b, ¢) of the projective plane that lie on the line
z = 0 are exactly those whose last coordinate c is zero. Thus the line at
infinity consists exactly of the points at infinity.

In short, the lines of the projective plane are the lines of the Euclidean
plane plus the line at infinity, which consists of the points at infinity.

We can now relate the points at infinity with the lines of the Eucli-
dean plane. As we saw in the discussion before (1), each point at infinity
can be written in exactly one way as

(1,s,0) or (0,1,0) (8)

for a real number s. The lines y = mx 4+ n and x = h correspond to the
lines y = mx + nz and x = hz (by the discussions relating (4) to (5) and
(6) to (7)). For any real number s, the point at infinity (1,s,0) lies on
the line y = mx 4 nz if and only if m equals s, and it does not lie on any
of the lines x = hz. The point at infinity (0, 1, 0) lies on all the lines x = hz
and on none of the lines y = mx 4 nz. In short, each point at infinity lies
on exactly those lines of the Euclidean plane that form a family of parallel
lines: the point at infinity (1,s,0) lies on the lines y = sx + n of slope s for
all real numbers n, and the point at infinity (0,1, 0) lies on the vertical lines
x = h for all real numbers h. In this way, we match up the points at infinity
with the families of parallel lines in the Euclidean plane.

We now know that the projective plane consists of the points and lines
of the Euclidean plane, additional points at infinity, and one added line
at infinity. The line at infinity contains all the points at infinity and no
points of the Euclidean plane. Each point at infinity lies on exactly those
lines in the Euclidean plane that form a family of parallel lines, and
there is exactly one point at infinity for each family of parallel lines.
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Figure 2.6 suggests the form of the projective plane. The square repre-
sents the Euclidean plane, and the line [ represents the line at infinity.
Dotted lines connect points at infinity with parallel lines in the Eucli-
dean plane that contain them.

Let P be the point at infinity on a line m in the Euclidean plane. We
imagine that we can reach P by proceeding infinitely far along m in
either direction (Figure 2.7(a)). This suggests that the two “ends” of m
in the Euclidean plane are joined at infinity by the point P so that m
forms a closed curve (Figure 2.7(b)).

An important consequence of adding the points at infinity is that we
no longer need to consider special cases created by parallel lines. In the
Euclidean plane, two lines intersect in a point unless they are parallel.
On the other hand, any two lines in the projective plane intersect in a
point: parallel lines in the Euclidean plane intersect at infinity in the
projective plane (Figure 2.6).

Theorem 2.1
Any two lines intersect at a unique point in the projective plane.

Proof

Two parallel lines in the Euclidean plane do not intersect in the Eucli-
dean plane, and they contain the same point P at infinity; thus, P is their
unique point of intersection (Figure 2.8). Two lines in the Euclidean
plane that are not parallel intersect exactly once in the projective plane
because they intersect exactly once in the Euclidean plane and contain
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Figure 2.10

different points at infinity (Figure 2.9). A line m of the Euclidean plane
intersects the line at infinity at the unique point at infinity that lies on m
and all lines parallel to it (Figure 2.10). These three cases include all
possibilities for two lines in the projective plane. O

In analogy with Theorem 2.1, we prove that any two points lie on a
unique line in the projective plane. Unlike Theorem 2.1, this property
already holds in the Euclidean plane, and so we need only show that it
still holds when we add the points and the line at infinity.

Theorem 2.2
Any two points lie on a unique line in the projective plane.
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Figure 2.11

Figure 2.12

Figure 2.13

Proof

Two points A and B in the Euclidean plane lie on a unique line in the
Euclidean plane; this is the unique line of the projective plane through A
and B because the line at infinity contains only points at infinity (Figure
2.11). The unique line through a point A of the Euclidean plane and a
point B at infinity is the line through A in the Euclidean plane that
belongs to the family of parallel lines containing B (Figure 2.12). The
unique line through two points A and B at infinity is the line at infinity
(Figure 2.13), since each line of the Euclidean plane contains only one
point at infinity. These three cases cover all possibilities for two points
in the projective plane. [

By Theorem 2.1, any two lines [ and m intersect at a unique point in
the projective plane, which we write as [ nm. By Theorem 2.2, any two
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points A and B lie on a unique line in the projective plane, which we
write as AB. We call points collinear if they all lie on one line, and we call
lines concurrent if they all lie on one point. This notation makes it easy to
state the following result, which we prove in Section 6 as Theorem 6.5:

Theorem 2.3 (Pappus’ Theorem)

Let e and f be two lines in the projective plane. Let A, B, and C be three points
of e other than en f, and let A', B, and C' be three points of f other than
en f. Then the points Q = AB'nA'B, R=BC'nB'C, and S= CA'nC'A
are collinear (Figure 2.14). O

Note that Pappus’ Theorem is a result about the collinearity of points.
The projective plane is well suited to such results: by Theorem 2.1, any
two lines in the projective plane intersect at a point, without the excep-
tions created in the Euclidean plane by parallel lines. On the other hand,
because distances and angles are undefined at infinity, results about
these concepts do not readily extend from the Euclidean to the projec-
tive plane.

Because the position of the line at infinity is unspecified in Pappus’
Theorem, we can obtain a number of different results about the Eucli-
dean plane from Pappus’ Theorem by taking the line at infinity in vari-
ous positions. The points at infinity vanish, and the lines of the Eucli-
dean plane that intersect at a point at infinity are parallel.

For example, suppose we take the line BC' in Pappus’ Theorem to be
the line at infinity. Because B is now at infinity, A'B is the line g through
A’ parallel to e, and we have Q = AB' n A'B = AB' ng (Figure 2.15). Be-
cause C’ is now at infinity, C'A is the line h through A parallel to f, and
we have S = CA' nC’A = CA’ nh. The conclusion of Pappus’ Theorem is
equivalent to the assertion that the lines BC’, B'C, and QS lie on a com-
mon point R. Because BC’ is now the line at infinity, the conclusion as-
serts that B'C and QS meet at a point R at infinity, which means that the
lines B'C and QS are parallel. The lines ¢ and f are not parallel because
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their intersection e N f does not lie on the line at infinity BC’. Thus, we
obtain the following result from Pappus’ Theorem by taking BC’ to be
the line at infinity:

Theorem 2.4

In the Euclidean plane, let e and f be two lines that are not parallel. Let A
and C be two points of e other than e N f, and let A" and B’ be two points of
f other than e n f. Let Q be the point where AB’ intersects the line g through
A’ parallel to e, and let S be the point where CA' intersects the line h through
A parallel of f. Then the lines QS and B'C are parallel (Figure 2.15). O

We defined a line in the projective plane to be the set of points in
the projective plane whose homogeneous coordinates (x, y, z) satisfy (2),
where the coefficients p, g, r in (2) are real numbers that are not all zero.
We justified this definition algebraically by showing that the lines it gives
correspond to the lines of the Euclidean plane plus the line at infinity.
We can also justify the definition geometrically, as follows.

If we take (x,y,z) to be the usual three-dimensional coordinates in
Euclidean space, as in the discussion accompanying Figure 2.1, (2) is
the general equation of a plane through the origin in Euclidean space.
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Thus, using homogeneous coordinates, we can identify the lines of the
projective plane with the planes through the origin in Euclidean space.
Just as we picture a line through the origin in Euclidean space as a point
by intersecting it with the plane z =1 (Figure 2.5), we picture a plane
through the origin in Euclidean space as a line by intersecting it with
the plane z = 1 (Figure 2.16). The plane z = 0, which does not intersect
the plane z = 1, corresponds to the line at infinity.

Exercises

2.1. Homogeneous coordinates of a point in the projective plane are given in
each part of this exercise. Determine whether the point lies in the Eucli-
dean plane or at infinity. If the point lies in the Euclidean plane, determine
its usual (x, y) coordinates. If the point lies at infinity, determine the slope
of the lines in the Euclidean plane that contain the point.

(a) (4,2,-3). (b) (1,-2,4).
(c) (0,5,2) (d) (3,0,-5).
(e) (—2,5,0). (f) (6,2,0).
(g) (~1,3,-4) (h) (5,0,0).
(i) (0,3,0) (4) (0,0,=2).

2.2. A point of the projective plane is given in each part of this exercise. De-
termine homogeneous coordinates of the point in one of the forms listed
in (1).

a) The point (2,5) in the Euclidean plane.

) The point (0, —3) in the Euclidean plane.

) The point (1, 4) in the Euclidean plane.

The point at infinity on lines of slope 3.

The point at infinity on lines of slope —2.

The point at infinity on vertical lines.

The point at infinity on horizontal lines.

2.3. In each part of this exercise, the equation of a line in the projective plane is
given in the form of (2). Determine whether the equation represents a line
of the Euclidean plane or the line at infinity. In the first case, write the
equation of the line as y = mx + n or x = h in the usual (x, y) coordinates
of the Euclidean plane.

(a) 6x — 2y + 3z =0. (b) 2x+5z=0.

(c) x+3y+4z=0. (d) 7z=0.

(e) 3x+ 2y =0. (f) 4y —2z=0.

(g) x—4z=0. (h) —2x+4y+z=0.

2.4. A line of the projective plane is given in each part of this exercise. Write
the equation of the line in homogeneous coordinates in the form of (2). In
parts (a)-(e) write the point at infinity on the line in one of the forms in

(8).
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2.5.

2.6.

2.7.

2.8.

(a) The line y = 2x — 3 in the Euclidean plane.
(b) The line y = —x/3 in the Euclidean plane.
(c) The line x = 2 in the Euclidean plane.

(d) The line y = 4 in the Euclidean plane.

(e) The line y = x 4 2 in the Euclidean plane.
(f) The line at infinity.

In each part of this exercise, two lines in the projective plane are given in
homogeneous coordinates in the form of (2). The lines intersect at a unique
point P (by Theorem 2.1). Find homogeneous coordinates for P in one of
the forms in (1). If P is a point of the Euclidean plane, find its usual (x, y)
coordinates. If P lies at infinity, find the slope of the lines in the Euclidean
plane that contain P.
(a) x+2y—6z=0and 3x+ 4y — 15z = 0.
b) —2x+4y—z=0and x—2y+3z=0.
c) 3x+y+5z=0andz=0.

) 2x4+3y—6z=0and —x+y+3z=0.
e) 6x —2y+4z=0and 3x —z=0.
f) 3x+y—2z=0and 6x+ 2y + 5z = 0.
g) 4x+3y+ 16z =0and 3x+ 2y + 10z = 0.

A~~~ o~ o~
o

In each part of this exercise, homogeneous coordinates are given for two
points in the projective plane. The points lie on a unique line I (by Theo-
rem 2.2). Find an equation for I in homogeneous coordinates in the form of
(2). Determine whether [ is a line of the Euclidean plane and, if so, write its
equation in (x, y) coordinates in one of the forms y = mx +n or x = h.

(a) (4,—1,3) and (2,5,1). (b) (4,3,2) and (—2,5,1).

(c) (2,5,1) and (6,1, 3). (d) (—4,5,6) and (2,3, —3).
(e) (4,5,0) and (1,-3,0). (f) (0,1,—2) and (—3,2, —4).
(g) (3,5,2) and (4,1,0). (h) (4,6,—2) and (5,0,0).

State the version of Pappus’ Theorem 2.3 that holds in the Euclidean plane
in the following cases. lllustrate each version with a figure in the Euclidean
plane.

(a) C isthe only point at infinity named.

(b) Q is the only point at infinity named.

(c) QR is the line at infinity, and it does not contain e N f.

(d) QR is the line at infinity, and it contains e N f.

(e) f isthe line at infinity.

(f) (en f)S is the line at infinity, and it does not contain Q.

(g) B'Sis the line at infinity, and it does not contain B.

(h) BB’ is the line at infinity, and it does not contain S.

(i) BB’ is the line at infinity, and it contains S.

(j) None of the points named lies at infinity.

The following theorem is proved in Exercise 3.21 (Figure 2.17):

Theorem

In the projective plane, let e and f be two lines on a point P. Let A, B, C be three
points of e other than P, and let A', B', C' be three points of f other than P.
Assume that the lines AA', BB', CC' are concurrent at a point T. Set Q =
AB'nA'Band R = BC' n B'C. Then the points P, Q, R are collinear.
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State the version of this theorem that holds in the Euclidean plane in
the following cases. Draw a figure in the Euclidean plane to illustrate each
version.

a) Q is the only point at infinity named.
b) C’ is the only point at infinity named.
B’ is the only point at infinity named.
P is the only point at infinity named.
T is the only point at infinity named.
f is the line at infinity.
B'C is the line at infinity.
A'C is the line at infinity.
PR is the line at infinity.
PT is the line at infinity.
QT is the line at infinity, and it does not contain C.
CC' is the line at infinity, and it does not contain Q.
) CC'is the line at infinity, and it contains Q.
CQ is the line at infinity, and it does not contain C’.
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The following theorem is proved in Exercise 3.21 (Figure 2.17). It is the
converse of the theorem in Exercise 2.8.

Theorem

In the projective plane, let e and f be two lines on a point P. Let A, B, C be three
points of e other than P, and let A', B', C' be three points of f other than P. Set
Q = AB'nA'B and R = BC' nB'C. Assume that the points P, Q, R are col-
linear. Then the lines AA', BB', CC' are concurrent at a point T.

State the version of this theorem that holds in the Euclidean plane in the
cases in Exercise 2.8. Draw a figure in the Euclidean plane to illustrate each
version.

. The following theorem is proved in Exercise 4.28 (Figure 2.18):

Theorem

In the projective plane, let e and f be two lines on a point P. Let A and A’ be two
points of e other than P, and let B, B', C be three points of f other than P. Set
G=ABNAB, H=AB nA'B, I=ABNAC, and ] = AC~A'B. Then the
lines GH, IJ, and e are concurrent.
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Figure 2.18

State the version of this theorem that holds in the Euclidean plane in
the following cases. Draw a figure in the Euclidean plane to illustrate each
version.

) A’ is the only point at infinity named.
b) B is the only point at infinity named.
c) G is the only point at infinity named.
d) e is the line at infinity.

e) f isthe line at infinity.

f) GH is the line at infinity.

g) HI is the line at infinity.

h) GI is the line at infinity.

A'B is the line at infinity.

AB' is the line at infinity.

(a
(
(
(
(
(
(
(
(i)
(3)

§3. Intersections in Homogeneous
Coordinates

We considered intersections of curves at the origin in Section 1, and we
enlarged the Euclidean plane to the projective plane in Section 2. We
combine these ideas in this section and consider intersections of curves
at all points in the projective plane.

We start by extending algebraic curves from the Euclidean to the
projective plane by homogenizing polynomials. We then consider inter-
section multiplicities at any point in the projective plane. We introduce
transformations, which are linear changes of variables in homogeneous
coordinates. We show that we can transform any four points, no three of
which are collinear, into any other four such points. Because transforma-
tions preserve intersection multiplicities, we can find the number of
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times that two curves intersect at any point in the projective plane by
transforming that point to the origin.

We start by extending algebraic curves from the Euclidean to the
projective plane. Some care is required, because a polynomial equation
g(x,y,z) = 0 in three variables does not generally define a curve in the
projective plane. In fact, g must have the property that

gla,b,c) =0 if and only if glta,tb,tc) =0

for any t # 0 and (a,b,c) # (0,0,0), so that the choice of the homoge-
neous coordinates for a point is irrelevant. For example, the equation
x = 1 does not define a curve in the projective plane because x = 1 does
not imply that tx =1 for t # 1.

Let d be a nonnegative integer. A homogeneous polynomial F(x,y, z) of
degree d in variables x, y, z is an expression

X Y,z Zeuxyzd ! ] (1>

where the sigma represents summation, the coefficients e; are real
numbers that are not all zero, and i and j vary over pairs of nonnegative
integers whose sum is at most d. In short, a homogeneous polynomial of
degree d is a nonzero polynomial such that the exponents of the vari-
ables in every term sum to d. We use capital letters to designate homo-
geneous polynomials.

Multiplying x, y, z in (1) by a nonzero number t gives

Fltx,ty,tz2) = > ey(tx) (ty) (t2) 7.

Because t is raised to the power i+j+ (d —i—j) = d in every term, we
can factor out t% and obtain

Flix,ty,2) = ¢} eype'y/27 = tF(x,y,2).

It follows that F(ta, tb, tc) = 0 if and only if F(a, b, ¢) = 0 for any t # 0 and
any point (a, b, ¢). In other words, if one choice of homogeneous coordi-
nates for a point satisfies the equation F = 0, they all do.

In homogeneous coordinates, an algebraic curve—or, simply, a curve—
is a homogeneous polynomial F(x,y,z). We imagine that the curve
consists of all points in the projective plane that satisfy the equation
F(x,y,z) = 0, where points corresponding to repeated factors of F are
repeated as many times as the factor. We have seen that the choice of
homogeneous coordinates for each point is immaterial. We often refer
to the curve F by the equation F(x,y,z) = 0 or its algebraic equivalents.
We call the degree of F' the degree of the curve.

For any homogeneous polynomial F(x,y,z), set f(x,y) =F(x,y,1).
Setting z =1 in (1) gives

X,Y) = Zel-jxlyj.



§3. Intersections in Homogeneous Coordinates 33

A point (x, y) of the Euclidean plane lies on the graph of f(x,y) = 0 if and
only if the corresponding point (x, y, 1) lies on the graph of F(x, y, z) = 0.
Thus, the curves f = 0 and F = 0 contain the same points of the Eucli-
dean plane, and we call f the restriction of F to the Euclidean plane.

Conversely, if f(x,y) is a nonzero polynomial of degree d in two
variables, we extend the curve f(x,y) =0 from the Euclidean to the
projective plane as follows. The homogenization F(x,y,z) of f is the
homogeneous polynomial obtained by multiplying each term of f by
the power of z needed to produce a term of degree d. That is, if

fly) = ey, (2)
we get
F(x,y,2) = Y _ep'y/z", (3)

so that F' is homogeneous of the same degree d as f. Setting z = 1 in the
right-hand side of (3) gives the right-hand side of (2). This shows that

Flx,y,1) = f(x ), (4)

and so F = 0 and f = 0 contain the same points of the Euclidean plane.
We call the curve F = 0 the extension of the curve f = 0 to the projective
plane. We obtain the graph of F' from the graph of f by adding points at
infinity, namely, the points (x, y, 0) such that F(x, y,0) = 0. Each point at
infinity can be written in exactly one way as (1,s,0) or (0,1, 0) for a real
number s, as in (8) in Section 2.

For example, suppose we consider the hyperbola xy = 1 in the Eucli-
dean plane (Figure 3.1). The polynomial xy — 1 has degree 2, and so we
multiply each term by the power of z needed to raise the degree to 2.
Thus, the homogenization is xy — z2, and the curve xy = 1 in the Eucli-
dean plane extends to the curve xy = z? in the projective plane. The
points (x,y,1) on xy = z? are exactly the points (x,y) on xy = 1, and so
both curves contain the same points of the Euclidean plane.

Which of the points (1,s,0) and (0, 1,0) at infinity lie on xy = z2? Sub-
stituting (1, s, 0) gives s = 0, and substituting (0, 1, 0) gives the true state-
ment 0 = 0. Thus, xy = z? contains exactly two points at infinity, (1,0, 0)

Figure 3.1
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Figure 3.2

and (0,1, 0). As in the discussion after (8) of Section 2, (1, 0, 0) is the point
at infinity on the lines of slope 0—the horizontal lines—of the Euclidean
plane, and (0, 1, 0) is the point at infinity on the vertical lines. We imagine
that the two ends of the hyperbola in Figure 3.1 that approach the y-axis
meet at the point at infinity on vertical lines, and that the two ends that
approach the x-axis meet at the point at infinity on horizontal lines.
Adding these two points at infinity joins the two pieces of the hyperbola
into a simple closed curve, as in Figure 3.2. The fact that Figure 3.2 is
simpler than Figure 3.1 suggests that working in the projective plane
may simplify the study of curves.

Lines in the projective plane, which we defined before (2) of Section
2, are exactly the curves of degree 1. Homogenization gives the same re-
lationship that we introduced in (4)-(7) of Section 2 between lines of the
Euclidean and projective planes. The lines y = mx + n and x = h of the
Euclidean plane extend to the lines y = mx 4+ nz and x = hz of the projec-
tive plane. The line at infinity z = 0 is not the extension of any line of
the Euclidean plane because the polynomial z is not the homogenization
of any polynomial in x and y: the polynomial 1 has degree 0 and is its
own homogenization.

Let f(x, y) be a nonzero polynomial, and let F(x, y, z) be its homogeni-
zation. We often refer to the curve F as “the curve f in the projective
plane” because f is more familiar than F. In effect, we automatically
extend curves to the projective plane by homogenizing them. For exam-
ple, “the curve xy = 1 in the projective plane” is the curve xy = z? in
homogeneous coordinates.

Now that we have defined curves in the projective plane, it is natural
to consider their intersection multiplicities. We assume that the inter-
section multiplicity Ip(F,G) is a quantity associated with every pair of
homogeneous polynomials F(x,y,z) and G(x,y, z) and every point P of
the projective plane. We think of Ip(F, G) as the number of times that
the curves F' and G intersect at P.

The number of times that two curves intersect at the origin should not
change when we restrict the curves from the projective to the Euclidean
plane and replace homogeneous coordinates with the usual (x, y) coordi-
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nates. We formalize this as the following property, which we establish in
Chapter IV along with the other intersection properties:

Property 3.1
Let F(x, y, z) and G(x, y, z) be homogeneous polynomials, and set f(x, y) =
F(x,y,1) and g(x, y) = G(x,y,1). Then we have

IO<F(X> Y, Z)a G<X7 Y, Z)) = IO<f<X7 y):g(xa y))y

where O is the origin. [

In Section 1, we considered intersections only at the origin. We can
now define the intersection multiplicity of two curves in the Euclidean
plane at any point of the plane.

Definition 3.2

Let f(x,y) and g(x,y) be nonzero polynomials, and let F(x,y,z) and
G(x, y, z) be their homogenizations. Let (a, b) be a point of the Euclidean
plane. Then we define the intersection multiplicity I, 1)(f, g) of the curves
f(x,y) =0 and g(x, y) = 0 at the point (a, b) in the Euclidean plane to be
the intersection multiplicity Ii4 1,1)(F, G) of the curves F(x,y,z) = 0 and
G(x,y,z) = 0 at the point (a, b, 1) in the projective plane. O

We think of the quantity I, 1)(f, g) in Definition 3.2 as the number of
times that the curves f = 0 and g = 0 in the Euclidean plane intersect at
the point (a, b). Definition 3.2 and the discussion before Property 1.1 give
two ways to assign intersection multiplicities of nonzero curves at the
origin, but Property 3.1 and (4) show that these two ways agree.

We saw in Section 2 that we can identify the points and lines of the
projective plane with the lines and planes through the origin in Eucli-
dean space. We introduce transformations—linear changes of variables
in homogeneous coordinates—to take advantage of the symmetry of
Euclidean space and transfer it to the projective plane. We use transfor-
mations in two key ways. First, we compute the intersection multiplicity
of two curves at any point in the projective plane by transforming that
point to the origin and using the techniques of Section 1. Second, we
use transformations to simplify the equations of curves.

Definition 3.3
A transformation is a map from the projective plane to itself that takes
any point (x, y, z) to the point (¥, y’, z') determined by the equations

X' = ax+ by + cz,
Yy =dxtey+fz (5)
Z =gx+hy+iz,
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where a-i are real numbers such that the equations in (5) are equivalent
to equations of the form

x =Ax"+ By’ + CZ,
y =Dx' + Ey’ + F7/, (6)
z=Gx'+ Hy + 17,

that express x, y, z in terms of X', y’, z’ for real numbers A-I. O

If x, y, z are not all zero, the equations in (6) imply that the corre-
sponding values of x', y’, z’ are not all zero. Moreover, if we replace
x, Yy, z in (5) with tx, ty, tz for a nonzero number ¢, the corresponding
values of ¥', y/, z' are also multiplied by t. Thus, the equations in (5)
map each point (x,y,z) in the projective plane to a well-defined point
(¥',y',2"), as Definition 3.3 asserts.

We consider several examples of transformations. Translating the
Euclidean plane h units horizontally and k units vertically maps any
point (x,y) to the point (x + h,y+ k). The corresponding map of the
projective plane sends (x, y, z) to (¥',y’, z’), where

¥ =x+ hz,
Y =y+ks, (7)
7 =z

Note that we have made the right-hand sides of these equations homo-
geneous of degree 1 by multiplying the constants h and k by z. These
equations give a transformation of the projective plane because we can
solve them for x, y, z in terms of X', y, z’, as Definition 3.3 requires:

x=x —hz,
! !

y=y —kz,

z=27.

Setting z=1 in (7) shows that the transformation maps (x,y,1) to
(x+h,y+k,1), and so it extends to the projective plane the translation
of the Euclidean plane taking (x, y) to (x + h, y + k). The equations in (7)
map each point (x, y, 0) at infinity to itself, which makes sense because a
translation does not change the slopes of lines.

Another way to exploit the symmetry of the projective plane is to
interchange coordinates. For example, interchanging the first and third
coordinates maps (x, y, z) to (¥, y',z'), where

K=z Y=y =x (8)
These equations have the form of both (5) and (6), and so they give
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a transformation. Likewise, any permutation—that is, any rearrange-
ment—of the coordinates is a transformation. We use these transforma-
tions to eliminate distinctions between points at infinity and points of
the Euclidean plane. For example, the transformation in (8) maps the
points on the line at infinity z = 0 to the points on the y-axis ¥’ = 0.

The third basic type of transformation multiplies coordinates by non-
zero constants. If r, s, t are nonzero numbers, we can solve the equations

X =rx, Yy = sy, 7z =tz (9)

for x, y, z and obtain

Thus, there is a transformation that maps (x, y, z) to (rx, sy, tz).

We show next that we can obtain new transformations from given
ones by reversing them or performing them in sequence. In this way,
we obtain a wide range of transformations from the three basic types
we have introduced.

Because the systems of equations in (5) and (6) are equivalent, if
there is a transformation mapping (x,y,z) to (¥',y’,z’), there is also a
transformation mapping (¥',y’, z’) to (x, y, z). Thus, we can reverse any
transformation.

Suppose that we are given the transformation in (5) mapping (x, y, z)
to (¥, y’,z'). Suppose that we are also given a transformation mapping
(¥, y,2') to (¥, y",2"), where

= +ky' + 12,
Y =mx +ny + o7, (10)
2" =px +qy +717.
Substituting the equations in (5) into these equations gives
X" = jlax + by + cz) + k(dx + ey + fz) + l(gx + hy + iz),
y" = m(ax + by + cz) + nldx + ey + fz) + o(gx + hy + iz),
z" = plax + by + cz) + qldx + ey + fz) + r(gx + hy + iz).
Collecting terms gives
" = (ja+kd +Ig)x + (jb + ke + Th)y + (je + kf + L)z,
Yy’ = (ma +nd + 0g)x + (mb + ne + oh)y + (mc + nf + 0i)z, (11)
z" = (pa+qd+1g)x + (pb + qe + rh)y + (pc + qf +1i)z,

which has the form of (5). Moreover, because the equations in (10) give a
transformation, we can solve them for ¥, y/, z’ in terms of ", y”, z” and
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obtain
X =Jx" +Ky" +Lz",
Yy =Mx"+ Ny" + 07",
zZ =P +Qy" + Rz,

for real numbers J-R. Substituting these expressions into (6) expresses x,
Y, z in terms of x”, y”, z"”. Thus the equations in (11) give a transforma-
tion mapping (x, y,z) to (x”, y",z"). This is the net result of following the
transformation taking (x, y, z) to (¥, y’, z’) with the transformation taking
(X, y',z) to (x",y",2"). In short, we can combine two transformations
into a third one by performing them in sequence.

How much latitude do we have in constructing transformations? We
note that any transformation must preserve lines: points are collinear if
and only if their images under the transformation are collinear. To see
this, let the transformation taking (x,y,z) to (¥',y’,z’) be given by the
equations in (5). A line in the projective plane has equation

px+qy+rz=0, (12)

where p, g, r are constants that are not all zero. Substituting the expres-
sions for x, y, z in (6) into (12) gives

p(Ax" +By' + CZ') +q(Dx' + Ey' + FZ') +v(Gx' + Hy' +1Z') = 0.
Collecting terms gives
(pA +gD +rG)x' + (pB+ qE +1H)y' + (pC + gF +rI)z' =0. (13)

Substituting the expressions for x’, y’, z’ in (5) turns (13) back into (12).
Since the coefficients in (12) are not all zero, the same holds for (13), and
so (13) represents a line. A point (x,y, z) lies on the line in (12) if and
only if its image (¥, y', z’) lies on the line in (13). Because a transforma-
tion is reversible, it follows that points are collinear if and only if their
images are collinear.

We can produce a wide range of transformations by combining the
three kinds of transformations in the discussions accompanying (7)-(9).
In fact, we can transform any four points, no three of which are col-
linear, into any other four points, no three of which are collinear. We
say that a transformation fixes a point if it maps the point to itself. We
call points distinct when no two of them are equal.

Theorem 3.4

In the projective plane, let A, B, C, D be four points, no three of which are
collinear, and let A', B', C', D' be four points, no three of which are col-
linear. Then there is a transformation that maps A, B, C, D to A', B', C', D',
respectively.
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Proof

We start by proving that there is a transformation that maps A, B, C, D to
(1,0,0), (0,1,0), (0,0,1), (1,1,1). At least one coordinate of A is nonzero.
Because we can use a transformation to interchange the coordinates of
A, we can assume that the last coordinate is nonzero. Because the coor-
dinates of A are homogeneous, we can divide them all by the last one, so
that we have A = (r,s, 1) for numbers r and s. Then the transformation

X =x—rz, Yy =y-— sz, z' =z,

maps A to (0,0,1). Following this with the transformation that inter-
changes the first and third coordinates gives a transformation that maps
A to (1,0,0). Let B; be the image of B under this transformation.
Because transformations are reversible, they map distinct points to
distinct points. Accordingly, since B # A, we have B; # (1,0, 0). Thus, ei-
ther the second or third coordinate of B; is nonzero. Interchanging these
coordinates fixes (1,0, 0), and so we can assume that the last coordinate
of B; is nonzero. Dividing through by this coordinate gives B; homoge-
neous coordinates (¢, u, 1) for real numbers t and u. The transformation

¥ =x—tz, Yy =y—uz 7z =z,

maps B; to (0,0,1) and fixes (1,0, 0). Following this with the transforma-
tion that interchanges the last two coordinates gives a transformation
that maps B; to (0,1,0) and fixes (1,0,0). Applying this transforma-
tion after the one at the end of the previous paragraph gives a trans-
formation that maps A to (1,0,0) and B to (0,1,0). Let C; be the image
of C under this transformation.

We are given that C does not lie on line AB. Since transformations
preserve collinearity, C; does not lie on the line through (1,0,0) and
(0,1,0). This is the line z = 0, and so the last coordinate of C; is nonzero.
Dividing the coordinates of C; by this number gives C; homogeneous co-
ordinates (v, w, 1) for numbers v and w. The transformation

¥ =x—vz, Yy =y—wz, 7z =z,

fixes (1,0,0) and (0,1,0) and maps C; to (0,0,1). Applying this trans-
formation after the one at the end of the previous paragraph gives a
transformation that maps A, B, C to (1,0,0), (0,1,0), (0,0,1). Let D; be
the image of D under this transformation.

D does not lie on any of the lines AB, BC, CA. Because transformations
preserve collinearity, D; does not lie on the line z = 0 through (1, 0,0) and
(0,1,0), the line x =0 through (0,1,0) and (0,0,1), or the line y=0
through (1,0,0) and (0,0,1). Thus, every coordinate of D; is nonzero,
and we write D; as (h, k, I) for nonzero numbers h, k, [. The transformation
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maps D; to (1,1,1) and fixes (1,0,0), (0,1,0), and (0,0, 1). (For example,
the transformation maps (1,0,0) to (1/h,0,0), which equals (1,0,0) in
homogeneous coordinates.) Applying this transformation after the one
at the end of the previous paragraph gives a transformation that maps
A, B, C, Dto (1,0,0), (0,1,0), (0,0,1), (1,1,1).

By symmetry, there is also a transformation that maps A’, B', C’, D' to
(1,0,0), (0,1,0), (0,0,1), (1,1,1). Reversing this transformation gives a
transformation that maps (1, 0, 0), (0,1,0), (0,0,1),(1,1,1) to A’, B', C’, D’.
Applying this transformation after the one at the end of the previous
paragraph gives a transformation that maps A, B, C, Dto A, B', C', D'. [J

Let V(x,y, z) be a homogeneous polynomial of degree d. We can write
Vix,y,z) = Z egx'y'z (14)

for constants e; not all zero. Substituting the expressions for x, y, z in (6)
into V gives a polynomial

V(. y,2)
= ey(AX' + By + C2')(Dx' + By + Fz')(Gx' + Hy + 12/}, (15)

Expanding the right-hand side of (15) shows that every term of V' has
the same degree d as V. The reversibility of the transformation and the
fact that V is nonzero implies that V' is also nonzero. Thus, V' is homo-
geneous of the same degree d as V. Because the right-hand sides of (14)
and (15) are related by the substitutions in (6), we see that

V(s t,u) = V'(s',t' ), (16)

for any point (s, t, u) in the projective plane, where (s', ¢, u’) is the image
of (s, t,u) under the transformation in (5). Because the transformation in
(5) is reversible, it matches up the points of the curve V(x,y,z) = 0 and
V(X' y',z") =0 (by (16)), and every curve V' of degree d arises in this
way from a unique curve of degree d. We call V' the image of V under
the transformation. We have shown that transformations map curves of
each degree d among themselves. The case d = 1 shows that transforma-
tions preserve lines, as we saw in the discussion accompanying (12) and
(13).

Note that the transformation taking (x,y, z) to (X', y’, z') given by (5) acts
on curves by substituting the expressions in (6) for x, y, z. For example, con-
sider the transformation

X =x+2z, Yy =y— 3z 7=z (17)

that translates points in the Euclidean plane 2 units horizontally and —3
units vertically. Solving these equations for x, y, z in terms of x/, y/, 2z’
gives

x=x —27, y=y +37, z=72. (18)
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2,-3)

Figure 3.3

To determine the image of the curve
yz = x* (19)

under the transformation in (17), substitute the expressions for x, y, z
from (18) into (19) to produce

(y +32")7 = (¥ —22')% (20)
Multiplying this equation out and collecting terms gives
Yz =x%—ax'z +2°. (21)

Thus, the transformation in (17) maps (19) to (21). Setting z =1 in (19)
and z’ =1 in (20) gives the familiar result that the parabola K with equa-
tion y = x* and vertex (0,0) can be translated 2 units to the right and
3 units down to give the parabola K’ with equation y’ + 3 = (¥’ — 2)?
and vertex (2, —3) (Figure 3.3).

We use transformations to study curves of degree at most 3 by simpli-
fying their equations. We have just noted that transformations preserve
the degree of a curve. We also need to know that transformations pre-
serve intersection multiplicities. We prove this result, which we now
state formally, in Chapter IV along with the other intersection properties.

Property 3.5

Let a transformation of the projective plane map (x,y,z) to (¥,y’,2’).
Let P be any point of the projective plane, and let P’ be its image under
the transformation. Let F(x, y,z) = 0 and G(x, y, z) = 0 be curves, and let
F'(X¥,y',z") =0 and let G'(¥',y’,z") = 0 be their images under the trans-
formation. Then we have

Ip(F(x, y,2), G(x, y, 2)) = Ip(F'(*, Y, 2), G'(x, ., 2')). O

If the transformation in Property 3.5 is given by the equations in (5),
we obtain F’ and G’ by substituting the expressions in (6) for x, y, z in F
and G, as discussed after the proof of Theorem 3.4.
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We can now generalize the intersection properties in Section 1 from
intersections at the origin to intersections at any point. We use Theorem
3.4 and the fact that transformations preserve intersection multiplicities
to transform any point of intersection of two curves to the origin.

Theorem 3.6
In the projective plane, let F(x,y,z) = 0, G(x,y,z) =0, and H(x, y,z) = 0 be
curves, and let P be a point. Then the following results hold:

(i) Ip(F, G) is a nonnegative integer or oo.
(ii) Ip(F,G) = Ip(G, F).
(iii) Ip(F, G) > 1 if and only if F and G both contain P.
(iv) Ip(F,G) = Ip(F,G + FH) if G + FH is homogeneous.
(v) Ip(F,GH) = Ip(F,G) + Ip(F, H).
(vi) Ip(F,G) = oo if F is a factor of G and contains P.
Proof

There is a transformation taking P to the origin, by Theorem 3.4. The
intersection multiplicity of two curves at P equals the intersection multi-
plicity of their images at the origin (by Property 3.5). We can compute
the intersection multiplicities of curves in the projective plane at the
origin by restricting the curves to the Euclidean plane (by Property
3.1). Thus, statements (i)-(vi) follow from Properties 1.1-1.3, 1.5, 1.6,
and Theorem 1.7. O

Parts (v) and (iii) of Theorem 3.6 show that
IP<F> kG) = IP<F> k) + IP(Fa G) = IP(Fa G)

for any real number k # 0. That is, multiplying a curve G by a nonzero
constant k does not change its intersection multiplicities with other
curves. Accordingly we consider kG to be the same curve as G for all real
numbers k # 0. That is, we consider two homogeneous polynomials to be
the same curve exactly when they ave scalar multiples of each other.

It is natural to think of the polynomials kG as the same curve for all
real numbers k # 0 because the equations kG(x, y,z) = 0 and G(x, y, z) =
0 have the same solutions in the projective plane. We identified lines
differing by nonzero constant multiples when we observed that every
line in the projective plane except z = 0 is given by (4) or (6) of Section
2. We also identified each line with its nonzero scalar multiples when we
proved in Theorems 2.1 and 2.2 that two lines intersect at a unique point
and two points lie on a unique line.

We need one more basic result relating intersections and transfor-
mations. Part (ii) of the next theorem states that translations of the
Euclidean plane preserve intersection multiplicities. This holds because
translations extend to transformations of the projective plane, and trans-
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formations preserve intersection multiplicities. Part (iii) states that re-
stricting curves from the projective to the Euclidean plane preserves
intersection multiplicities. This generalizes Property 3.1 by replacing
the origin with any point in the Euclidean plane. It is a companion result
to Definition 3.2, which shows that extending curves from the Euclidean
to the projective plane preserves intersection multiplicities; Theorem
3.7(iii) is slightly more general than Definition 3.2, since there are
curves in the projective plane such as xz = 0 that are not extensions of
curves in the Euclidean plane because they have z as a factor.

Theorem 3.7
Let a and b be real numbers.

(i) Let F(x,y,z) and G(x,y,z) be homogeneous polynomials, and let their
restrictions to the Euclidean plane be

fxy) =F(xy1) and  glxy) =Gxy,1). (22)
Then
Lia,p,1)(F(%,Y, 2), G(%, Y, 2)) (23)
equals
Lo.o)(f(x+a,y+Db),g(x+a,y+D)). (24)

(ii) If f(x,y) and g(x,y) are nonzero polynomials, we have

I(a,b)<f<X> y)>g<xa y)) = I(O,O)<f<x+ a,y + b):g(?‘+a>y+ b)) (25)

(iii) Let F and G be homogeneous polynomials, and define f and g by the
equations in (22). Then we have

lia,p,1)(F, G) = Iiap)(f, 8) (26)
Proof
(i) As in the discussion accompanying (7), the equations
¥ =x—az, y =y— bz, 7 =z, (27)

represent a transformation because they can be solved for x, y, z in
terms of ¥/, y’, z’, as follows:

x=x"+az y=y +bz, z=17. (28)

The transformation in (27) maps (a,b,1) to (0,0,1). Accordingly, Prop-
erty 3.5, which states that transformations preserve intersection multi-
plicities, shows that the quantity in (23) equals

I(O, 0,1)(F<X, + aZla y, + bZ/9Z,>’ G(Xl + aZ/; y, + bZ/aZ/)>; (29)
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2,4

Figure 3.4

where we have substituted the expressions for x, y, z from (28) into (23).
Setting z’ = 1 in the polynomials in (29) gives the polynomials in (24)
(by (22)). Thus, the intersection multiplicities in (29) and (24) are equal
(by Property 3.1). (The primes in (29) are immaterial, since they merely
show that this expression arises from a transformation.) In short, the
quantities in (23) and (24) are equal because they both equal the quan-
tity in (29).

(i) Let F(x,y,z) and G(x,y,z) be the homogenizations of f(x,y) and
g(x,y). Equation (4) shows that the equations in (22) hold. Thus, part (i)
shows that the quantities in (23) and (24) are equal. The quantity in (23)
equals the left-hand side of (25) (by Definition 3.2). Hence, (25) holds.

Part (iii) follows by combining parts (i) and (ii). O

Theorem 3.7(ii) makes it easy to compute the number of times that
two curves intersect at any point in the Euclidean plane: we translate
the point to the origin and then apply the techniques of Section 1. For
example, suppose we want to compute the number of times that y = x2
and y = 2x intersect at (2, 4) (Figure 3.4). Theorem 3.7(ii) shows that

Ina(y—xy—2x) =Ioo(y+4—(x+2)*y+4—2(x+2)
=I,0(y — X2 — 4x,y — 2x).

By Theorems 1.9(ii) and 1.11, this intersection multiplicity is the
smallest degree of any nonzero term produced by substituting 2x for y
in y — x% — 4x and collecting terms, which gives —x? — 2x. This degree
is 1, and so y = x? intersects y = 2x once at (2, 4).

To find the number of times that two curves intersect at a point P at
infinity, transform P to a point of the Euclidean plane by interchanging
coordinates and then apply Theorem 3.7. For example, suppose that
we want to find the number of times that the hyperbola x> —y? =1
intersects its asymptote y = x at infinity (Figure 3.5). Converting to
homogeneous coordinates, we want the intersection multiplicity of
¥ —y?—2z2=0 and y—x=0 at (1,1,0). We interchange x and z to
move the point of intersection into the Euclidean plane. This gives

Loz —y* —x*,y—2) (30)
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Figure 3.5

(by Property 3.5). Taking a = 0 and b =1 in Theorem 3.7(i) shows that
the quantity in (30) equals

Io(1—(y+1)° =X (y+1) - 1) =Io(—y* — 2y — X", y),

where O is the origin. This intersection multiplicity is 2, by Theorems
1.9(ii) and 1.11, since setting y = 0 in —y? — 2y — x* gives —x%. Thus,
the hyperbola intersects its asymptote twice at infinity.

We end this section with a remark for readers familiar with linear
algebra. Transformations of the projective plane correspond to invertible
linear transformations of R3, by Definition 3.3. Because linear transfor-
mations of R® are determined by the images of three linearly indepen-
dent vectors, it may seem surprising that Theorem 3.4 shows that there
are four degrees of freedom in defining transformations of the projective
plane. In fact, the fourth degree of freedom arises from the homogeneity
of coordinates in the projective plane, as the second-to-last paragraph of
the proof of Theorem 3.4 shows.

Exercises

3.1. A curve f(x,y) = 0 in the Euclidean plane is given in each part of this exer-
cise. Determine the extension F(x,y,z) = 0 of the curve to the projective
plane, where F is the homogenization of f. Determine the points at infinity
on the extension, writing each one as in (8) of Section 2, and determine the
slope of the lines in the Euclidean plane on each of these points.

) x4+ 3x%y = 4y* — 5y° —y? + 2y + 6.

y? — 3xy + 5x — 2y = 21.

c) y*=x%+5x

d) y® = 4x’y +8x +12.

e) x3 — 3x%y + 2xy — 4y = 10.

(a

(b

(

(
(

3.2. A curve F(x,y,z) =0 in the projective plane is given in each part of the

exercise. Determine the equation f(x,y) =0 of the curve’s restriction to
the Euclidean plane.



46

3.3.

3.4.

3.5.

3.6.

3.7.

3.8.

3.9.

I. Intersections of Curves

(a) z8 =x z—ny +3y

(b) 8x + 2x2 zfxyzqty +3yz? +4z% = 0.

(c) x 2xyz+xyz +3y* + 5yz3 — 22 = 0.

(d) 2xyz? + x3z —yz® + 3x3y = 0.

In each part of Exercise 3.2, determine the points at infinity on the given
curve. Write each point at infinity in one of the forms in (8) of Section 2,
and specify the slope of the lines in the Euclidean plane on each point.

Two curves and a point in the Euclidean plane are given in each part of
this exercise. Use Theorem 3.7(ii) to find the number of times that the
curves intersect at the point.
a) ¥ +y? =4,y +y®>=40,2).
b) ¥ 4+y?> =5 x+2y> =09, (1,-2).
c) xy =2, xy* =4, (1,2).
) X4 2xy =4, x> +y? =4y + 4, (—2,0).
e) ¥ +2xy—2y=1,xX=y*+2y+2,(1,-1).
) ¥ +xy+y=1,x2+4=0,(-1,2).

Each part of this exercise gives two curves in homogeneous coordinates
and a point at infinity in the projective plane. Find the number of times
that the curves intersect at the point as in the discussion accompanying
Figure 3.5.

) xy—Zx + 22, y? +yz—4x (1, 2,0)

) 3y? 4+ xy + 222 =0, z° = xy? + 343, (3, —1,0).

) 3y =x+ 2z, 3y° + xz? = xy?, (3,1,0).

d) xy+y2 =22 x> —y? =222, (1,-1,0).

) xz? + X%y = 4y, ¥*z% + 3xy® = 6y, (2,1,0).

(a
(b
(c
(
(e
Consider the equations

X = 2%, Yy =4x—y, Z=x—-3y+oz (31)
(a) Show that these equations give a transformation by solving them for

X, Y, z in terms of ¥, i/, z’, as in (6).

(b) Determine the image of the line y = 3x — 2z under the transformation
n (31).

(c) Determine the image of the curve x> —y? =z
tion in (31).

2 under the transforma-

Do parts (a)-(c) of Exercise 3.6 for the equations
x' =3y, y =x+ 2z Z=2x—z. (32)

Do parts (a)-(c) of Exercise 3.6 for the equations
¥ =3x+2y—z y =x+3y, z'=x+2y. (33)

Compute the combined effect of performing the following sequences of
transformations:

(a) Following the transformation in (31) with that in (32).
(b) Following the transformation in (32) with that in (31).
(c) Following the transformation in (31) with that in (33).
(d) Following the transformation in (33) with that in (31).
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3.10.

3.11.

3.12.

3.13.

3.14.

3.15.

3.16.

(e) Following the transformation in (32) with that in (33).
(f) Following the transformation in (33) with that in (32).

Let A, B, C be three collinear points, and let A’, B’, C’' be three collinear
points. Use Theorem 3.4 to prove that there is a transformation that maps
A, B,Cto A, B/, C’, respectively. (We use this result in Exercises 3.11, 3.15,
and 7.14.)

(a) Consider any transformation that fixes the origin, the point (1, 0) in the
Euclidean plane, and the point at infinity on horizontal lines. Prove
that there are real numbers a, b, e, h such that a # 0, e # 0, and the
transformation maps

(%,y,2) — (ax + by, ey, hy + az).

Conclude that the transformation fixes every point on the x-axis.

(b) Let A, B, C be three points on a line 1. Use part (a) and Exercise 3.10 to
prove that every transformation that fixes A, B, C also fixes every point
of I. (We use this exercise in Exercises 4.25-4.29, 6.17-6.20, and 16.7-
16.13.)

Let I and m be two lines that do not contain a point T. Prove that there is
a transformation that maps X to TX nm for each point X of I. (Hint: One
possible approach is to use Theorem 3.4 to reduce to the case where [ is
the x-axis, m is the y-axis, and T is the point at infinity on lines of slope —1.)

Consider a transformation that maps a line [ to a line m # . Prove that the
transformation fixes I nm if and only if there is a point T lying on neither
I nor m such that the transformation maps X to TX nm for every point X
of .

(Hint: If the given transformation fixes [ "m, why is there a point T
such that the transformation in Exercise 3.12 agrees with the given trans-
formation on I " m and two other points of [? Why does it follow from Exer-
cise 3.11(b) that the two transformations agree on every point of I?)

Let A, B, C, D be four points, no three of which are collinear, in the projec-
tive plane. Prove that ABNCD, AC nBD, and AD nBC are three non-
collinear points. (This exercise is used in Exercises 4.29, 6.18, and 6.19.
One possible approach to this exercise is to use Theorem 3.4 to reduce to
the case where A-D are particular points and direct computation can be
used.)

Let A, B, C, D be four collinear points. Prove that there is a transformation
that interchanges A with C and B with D. (This exercise is used in Exercise
4.29. It may be helpful in doing this exercise to use Exercise 3.10 to trans-
form A, B, C into three particular collinear points.)

Consider a curve of the form y = f(x), where f(x) is a polynomial in x of
positive degree n. Prove that the curve has exactly one point P at infinity,
that it intersects every vertical line exactly n — 1 times at P, and that it
intersects the line at infinity exactly n times at P.

(The case n = 1 may require separate consideration.)
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3.18.

3.19.

3.20.

I. Intersections of Curves

. Four points, no three of which are collinear, are given in each part of this

exercise. There is a transformation that maps the points (1,0, 0), (0, 1,0),
(0,0,1), (1,1,1) to the four given points, by Theorem 3.4. Find equations
as in (5) that give such a transformation. Recall that the homogeneous co-
ordinates of a point can be multiplied by a nonzero number t without af-
fecting the point.

(a) (0,2,1),(1,2,-1),(0,1,0), (1,3, 2).

b) (1,1,0), (1,2,0), (0,1,1), (0,1, —1).

c) (3,0,5),(0,1,2), (1,0,—1), (3, —1,4).

d) (1,1,1), (1,0,1), (0,1,2), (1,0,0).

5+

(
(
(

5

If a transformation fixes each of the points (1,0, 0), (0, 1,0), (0,0,1), and
(1,1,1), prove that the transformation has the form x' =tx, y' =ty,
z' = tz for a nonzero number t. Conclude that the transformation fixes
every point.

(b) In the projective plane, let A, B, C, D be four points, no three of which
are collinear, and let A’, B', C’, D’ be four points, no three of which are
collinear. Theorem 3.4 states that there is a transformation that maps
A, B, C, D to A, B/, C’, D'. Use part (a) and Theorem 3.4 to prove
that this transformation is unique; that is, if two transformations map
A, B,C,Dto A, B/, C', D', prove that every point has the same image
under both transformations.

(a

Consider the following result:

Theorem

In the projective plane, let N, A, A" be three collinear points, and let 1 be a line
that does not contain A or A'. Then there is a transformation that fixes N and
every point of I, maps A to A', and sends each point X to a point X' collinear
with X and N.

(a) Prove the theorem when N is the origin and I is the line at infinity by
considering the transformations x' =rx, y' =ry, z’ =z for nonzero
numbers 7.

(b) Prove the theorem when I is the line at infinity and N is the point at
infinity on vertical lines by considering the transformations x’' = x,
Yy =y+ kz, z’ = z for nonzero numbers k.

(c) Prove the theorem in general by combining parts (a) and (b) with
Theorem 3.4.

This exercise contains the proof of the following result (Figure 3.6):

Desargues’ Theorem

Let A, C, E, A', C', E' be distinct points such that no two of the lines AC, CE, AE,
A'C', C'E', A'E', AA', CC’, EE' are equal. Set P= ACnA'C', Q = AENA'E/,
and R = CEN C'E'. Then the lines AA', CC', EE' are concurrent if and only if
the points P, Q, R are collinear.

(a) Prove that P # Q. Set [ = PQ and prove that neither A nor A’ lies on L.
Set N = AA' n CC’, and prove that neither A nor A’ equals N.
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Figure 3.6

(b) If AA’, CC’, EE' are concurrent, prove that the transformation in the
theorem in Exercise 3.19 maps C to C’ and E to E’, and deduce that P,
Q, R are collinear.

(c) If P, Q, R are collinear, prove that the transformation in the theorem in
Exercise 3.19 maps C to C’ and E to E’, and conclude that AA’, CC’, EE’
are concurrent.

Use Desargues’ Theorem from Exercise 3.20 to prove the following results:
(a) The theorem in Exercise 2.8.
(b) The theorem in Exercise 2.9.

Let F(x,y,z) be a homogeneous polynomial. Prove that F(x,y,z) is the
homogenization of a polynomial in x and y if and only if F(x, y,z) does
not have z as a factor.

Let F(x,y,z) be a homogeneous polynomial, let f(x,y) = F(x,y,1) be the
restriction of F to the Euclidean plane, and let F;(x, y,z) be the homoge-
nization of f. Prove that F = z°F;, where z° is the highest power of z that
can be factored out of F.

Prove that any factor of a homogeneous polynomial is itself homogeneous.

Combine Exercise 3.18(a) with the proof of Theorem 3.4 to show that every
transformation is a sequence of the following transformations:

a) ¥ =xy =y, z =kzfork #0.

b) ¥ =x+7rz,y =y, z =z for a number r.

o) xX=zy=y72z=x

d ¥=xy =2z1727=y.

The corresponding result in linear algebra is that an invertible 3-by-3 ma-
trix is a product of elementary matrices.)

(
(
(
(
(

Prove that a transformation fixes every point at infinity if and only if
there are numbers s, h, k such that s is nonzero and the transformation
maps (x,y) to (sx+ h,sy + k) for each point (x,y) in the Euclidean plane.
Show that such a transformation exists for any numbers s, h, k such that
s # 0.
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§4. Lines and Tangents

We take the general results of the first three sections and use them now
to analyze the intersections of lines and curves. We prove that a line
intersects a curve of degree n that does not contain it at most n times,
counting multiplicities; this means that the sum of the multiplicities of
the intersections is at most n. This is the first of many results about the
geometric significance of the degree of a curve.

In the second half of this section, we analyze the number of times that
a line and a curve intersect at a point. If P is a point of a curve F, and if
there is a unique line that intersects F more than once at P; we call this
line the tangent to F at P. We show that this is equivalent to using im-
plicit differentiation to find tangents to curves, as in first-year calculus.
We end the section by using tangents to characterize pairs of curves
that intersect more than once at a point.

We start by observing that any two lines in the projective plane should
intersect with multiplicity 1 because their intersection is as simple as
possible. We give a formal proof by transforming the lines to the x- and
y-axes and applying Property 1.4.

Theorem 4.1
Any two lines in the projective plane intersect with multiplicity 1 at their
unique point of intersection.

Proof

Let [ and m be the two given lines. They intersect at a unique point P
(by Theorem 2.1). Let Q be a second point on [, and let R be a second
point on m. There is a transformation that maps P to the origin O, Q to
a second point on the y-axis x = 0, and R to a second point on the x-axis
Yy = 0 (by Theorem 3.4). This transformation maps [ and m to x = 0 and
y =0, and so we have Ip(l, m) = Ip(x,y) = 1 (by Properties 3.5, 3.1, and
1.4). ]

Our goal in the first half of this section is to generalize Theorem 4.1
by determining the number of times, counting multiplicities, that a line
intersects any algebraic curve in the projective plane. Theorem 1.11 de-
termines the number of times that a curve of the form y = f(x) intersects
a curve g(x,y) = 0 at the origin when the second curve does not contain
the first. We now find the number of times that these curves intersect at
any point (a, f(a)) on y = f(x) in the Euclidean plane. We do so by using
Theorem 3.7(ii) to translate (a, f(a)) to the origin and applying Theorem
1.11.
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Theorem 4.2
Let y = f(x) and g(x,y) = 0 be curves, and let a be a real number. If

g, f(x)) = (x — a)°h(x) (1)

for an integer s > 0 and a polynomial h(x) such that h(a) # 0, then s is the
number of times that y = f(x) and g(x, y) = 0 intersect at the point (a, f(a)).

Proof
Theorem 3.7(ii) shows that the intersection multiplicity of the curves
y—f(x) and g(x,y) at (a, f(a)) equals the intersection multiplicity of the
curves

y+fla)—flx+a) and  glx+a,y+ fla) (2)

at the origin. We think of the first polynomial in (2) as y minus the
quantity f(x 4+ a) — f(a). Substituting this quantity for y in the second
polynomial in (2) gives

gx+a flx+a)). (3)

This polynomial is nonzero, because it becomes g(x, f(x)) if we substitute
x —a for x, and (1) and the assumption that h(a) # 0 show that g(x, f(x))
is nonzero. Thus, the first polynomial in (2) is not a factor of the second
(by Theorem 1.9(ii)). Moreover, the first polynomial in (2) takes the value
zero when x = 0 and y = 0. Hence, Theorem 1.11 shows that the number
of times that the curves in (2) intersect at the origin is the smallest
degree of any nonzero term in (3).
Substituting x + a for x in (1) shows that

gx+a, f(x+a)) = xk(x),

where k(x) = h(x+a) is a polynomial such that k(0) = h(a) # 0. It
follows that s is the smallest degree of any nonzero term of (3), since
the fact that k(0) # 0 means that the constant term of k(x) is nonzero.
Together with the first and last sentences of the previous paragraphs,
this shows that y = f(x) and g(x, y) = 0 intersect s times at (a, f(a)). [

To find the points in the Euclidean plane where curves y = f(x) and
g(x, y) = 0 intersect, we naturally substitute f(x) for y in g(x,y) =0 and
take the roots of g(x, f(x)) = 0. This commonsense procedure works for
multiple intersections as well: the number of times that y = f(x) inter-
sects g(x,y) = 0 at a point (a, f(a)) is the number of times that x — a is a
factor of g(x, f(x)). This is the gist of Theorem 4.2, which we restate as
follows. We use the next result to study the intersections of lines and
curves in Theorems 4.4 and 4.5 and conics and curves in Theorems 5.8
and 5.9.
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Theorem 4.3
Let y = f(x) and g(x,y) = 0 be curves in the Euclidean plane. If y — f(x) is
not a factor of g(x, y), we can write

gx, f(x) = (x —ar)™ -+ (x — ay) (%), (4)

where the a; are distinct real numbers, the s; are positive integers, and r(x) is
a polynomial that has no real voots. Then y = f(x) and g(x,y) = 0 intersect
s; times at the point (a;, f(a;)) fori=1,..., v, and these are the only points of
intersection in the Euclidean plane.

Proof
Since y — f(x) is not a factor of g(x, y), the polynomial g(x, f(x)) is non-
zero (by Theorem 1.9(ii)). Factor as many polynomials of degree 1 as
possible out of g(x, f(x)). The number of factors cannot exceed the degree
of g(x, f(x)) because g(x, f(x)) is nonzero. When the process of factoriza-
tion ends, the remaining factor r(x) has no factors of degree 1, and so it
has no real roots (by Theorem 1.10(ii)). Thus, we can factor g(x, f(x)) as
in (4).
Since a; # a; for i # j, (4) shows that

g(x, f(x)) = (x — ai)*h(x),

where h(x) is a polynomial such that h(a;) # 0. Thus, s; is the number of
times that y = f(x) and g(x,y) = 0 intersect at the point (a;, f(a;)) (by
Theorem 4.2). If a is any real number other than ay,...,a,, (4) shows
that g(a, f(a)) # 0, and so the curve g(x, y) = 0 does not contain the point
(a, f(a)) and does not intersect y = f(x) there (by Theorem 3.6(iii) and
Definition 3.2). Likewise, y = f(x) does not intersect g(x,y) = 0 at any
point (a,b) in the Euclidean plane with b # f(a), since these points do
not lie on y = f(x). Ol

In short, if a curve has the special form y = f(x), Theorem 4.3 gives
the multiplicities of all of its intersections in the Euclidean plane with
any curve g(x,y) = 0 that does not contain it. We simply substitute f(x)
for y in g(x, y) and factor the resulting polynomial g(x, f(x)). In order to
apply Theorem 4.3, we must check that y — f(x) is not a factor of g(x, y),
but we can do so simply by checking that g(x, f(x)) is nonzero (by
Theorem 1.9(ii)).

In either the Euclidean or the projective plane, we say that two curves
intersect d times, counting multiplicities, if d is the sum of the intersection
multiplicities of the curves at all points in the plane. Let g(x,y) = 0 be a
curve of degree n, and let y = mx + b be a nonvertical line that does not
lie entirely on the curve. Because the degree of g(x, mx + b) is at most the
degree n of g, Theorem 4.3 shows that the line intersects the curve at
most n times, counting multiplicities, in the Euclidean plane. We extend
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this result to the projective plane in Theorem 4.5. We start with the spe-
cial case where the line is the x-axis y = 0. We single this case out so that
we can return to it in the proofs of Theorems 5.2, 6.4, 9.1, and 11.1.

Theorem 4.4
Let G(x,y,z) be a homogeneous polynomial of degree n that does not have y
as a factor. If we set g(x,y) = G(x, y, 1), we can write

g%, 0) = (x —ay)®™ -+ (x — ay) ¥ r(x), (5)

for distinct real numbers a;, positive integers s;, and a polynomial v(x) that
has no real roots. Then the number of times, counting multiplicities, that the
curve G = 0 intersects the x-axis y = 0 in the projective plane is the degree n
of G minus the degree of r(x).

Proof
Since G is homogeneous of degree n, we can write

n—i—
G(x,y,z g@UXJZ J.

Setting y = 0 leaves the terms without y, which are the terms with j = 0.

This yields
G(x,0,2) Zel g, (6)
Setting z =1 gives
g(x,0) = G(x,0,1) Zelox (7)

Because y is not a factor of G(x, y, z), (6) is nonzero, and so is (7). Let d be
the degree of g(x,0). Then d is also the highest exponent on x in a non-
zero term of (6), which means that d is the highest exponent on x in a
term of G(x, y, z) without y.

Since (7) is nonzero, we can factor g(x,0) as in (5). This factorization
shows that

S1+ -+ 8y (8)

is the degree d of g(x,0) minus the degree of r(x). The sum (8) is
the number of times, counting multiplicities, that y =0 intersects
G(x, y,z) = 0 in the Euclidean plane (by Theorems 3.7(iii) and 4.3).

We claim that the number of times, counting multiplicities, that y = 0
intersects G = 0 at infinity is n — d. We add this to the number of inter-
sections in the Euclidean plane, which is d minus the degree of r(x)
(by the previous paragraph). Then the total number of intersections
in the projective plane is n minus the degree of r(x), as the theorem
asserts.
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To prove the claim, we count the intersections of y =0 and G =0 at
infinity. The only possible point of intersection is (1,0, 0), since this is
the only point at infinity on the line y = 0. To send (1,0, 0) to the origin
(0,0,1), we interchange x and z with a transformation (as in (8) of §3).
This gives

I(l,O,O)(ya G(X7 Y, Z)> = I(O,O,l)(yy G<Za Y, X))
(by Property 3.5). Looking at the right side in the Euclidean plane gives

I(o,o)(% G(la Y, X))

(by Property 3.1). This equals the least degree of a nonzero term of
G(1,0,x), by Theorem 1.11. That degree is the least exponent on z in a
nonzero term of G(x, 0, z). That exponent is n — d, since d is the largest
exponent on x in a nonzero term of (6). We have established the claim
in the previous paragraph. O

We can now prove that any line intersects any curve of degree n that
does not contain it at most n times in the projective plane, counting
multiplicities. We need one preliminary observation. If a transformation
mapping (x,y,z) to (¥',y’,z') takes homogeneous polynomials F(x, y, z)
and G(x,y,z) to F'(¥,y',z') and G'(¥',y’,z’), then F is a factor of G if
and only if F’ is a factor of G'. In fact, using the equations in (6) of
Section 3 to substitute for x,y, z changes an equation

G(x,y,2) = F(x,y, 2)H(x, Y, z)
into an equation
G(¥y,2)=F(y,2\H,y,2),
where H and H' are homogeneous polynomials, and this process can be
reversed because transformations can be reversed.

Theorem 4.5

Let L =0 be a line, and let G = 0 be a curve of degree n. If L is not a factor
of G, then L and G intersect at most n times, counting multiplicities, in the
projective plane.

Proof

There is a transformation that maps two points of L to two points on the
x-axis y = 0 (by Theorem 3.4). This transformation takes the line L and
the curve G to the line y = 0 and a curve G’ of degree n, as discussed
after the proof of Theorem 3.4. G’ does not have y as a factor, by the dis-
cussion before this theorem and the assumption G does not have L as a
factor. Thus, y = 0 intersects G’ = 0 at most n times, counting multiplici-
ties, in the projective plane (by Theorem 4.4). Because transformations
preserve intersection multiplicities (by Property 3.5), L and G intersect
at most n times, counting multiplicities, in the projective plane. O
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In short, a line intersects a curve of degree n which does not contain it
at most n times, even when we count multiple intersections and inter-
sections at infinity. For example, because (2) of the Introduction to
Chapter I has degree 4, every line intersects the curve in Figure 1.1 at
most four times. Figure 4.1 shows the same curve, which appears to
have four intersections with the lines [, m, and n (including one double
intersection with m and two with n), two intersections with p, and none
with g. Similarly, because the curve y = x® in Figure 1.3 has degree 3, it
intersects any line at most three times. Theorem 4.1 shows that we can
omit the words “at most” in Theorem 4.5 when n = 1: one line intersects
another—that is, another curve of degree 1—exactly once, counting
multiplicities.

Of course, we had to assume in Theorem 4.5 that L is not a factor of G.
When L is a factor of G, they intersect infinitely many times at every
point of L (by Theorem 3.6(v1i)).

In order to introduce tangents to curves, we must analyze more care-
fully the number of times that a line and a curve intersect at a point. We
start by looking at the origin.

Let g(x,y) = 0 be a curve that contains the origin. Then g(x, y) has no
constant term, and so we can write

gx,y) = sx+ty + hix, y),

where h(x, y) is a polynomial in which every term has degree at least 2.
We consider the intersection multiplicity of g(x,y) =0 and the line
y = mx at the origin. If g(x, mx) is nonzero, the intersection multiplicity
is the smallest degree of any nonzero term in

g(x, mx) = sx + tmx + h(x, mx)

after collecting powers of x (by Theorems 1.9(ii) and 1.11). If g(x, mx) is
zero, the intersection multiplicity is co (by Theorem 1.7, since Theorem
1.9(ii) shows that y — mx is a factor of g(x,y) in this case). Thus, the
intersection multiplicity is at least 2 if and only if s + tm equals 0, since
every term of h(x, mx) has degree at least 2. If s + tm = 0, then either s
and t are both 0, or else t # 0 and the equations

sx+ty = —tmx +ty = t(y — mx)
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show that sx 4ty =0 is the same line as y = mx. Conversely, s+ tm
equals 0 if s and t are both 0. If sx + ty = 0 is the same line as y = mx,
then t is nonzero and y = (—s/t)x is the same line as y = mx, and so we
have m = —s/t and s+ tm = 0. We have proved the following result for
lines of the form y = max:

Theorem 4.6
In the Euclidean plane, let | be a line through the origin, and let g(x,y) = 0
be a curve through the origin. Write

gx,y) =sx+ty +hx, y),

where h(x, y) is a polynomial in which every term has degree at least 2. Then
[ and g intersect at least twice at the origin if and only if either s and t are
both 0 or else sx + ty = 0 is the line 1.

Proof

We have already proved this for lines of the form y = mx, and so the only
line remaining is x = 0. Because the transformation switching x and y
preserves intersection multiplicities (by Properties 3.1 and 3.5 and the
discussion accompanying (8) of Section 3), and because we have proved
the result when [ is the line y = 0, it also holds when [ is the line x = 0.

O

We can restate this theorem slightly by fixing the curve g, letting the
line I vary, and using Properties 1.1 and 1.3. This gives the following
result:

Theorem 4.7
In the Euclidean plane, let g(x,y) = 0 be a curve through the origin. Write

8x y) = sx +ty + hix, y),
where h(x, y) is a polynomial in which every term has degree at least 2.

(i) If s = 0 = t, then every line through the origin intersects g at least twice
at the origin.

(ii) If's andt are not both zero, then sx + ty = 0 is the unique line that inter-
sects g more than once at the origin. Every other line through the origin
intersects g exactly once there. O

We can generalize Theorem 4.7 from the origin to any point P in
the projective plane because there is a transformation that maps P to
the origin and preserves intersection multiplicities (by Theorem 3.4
and Properties 3.1 and 3.5). Thus, Theorem 4.7 extends to the following
result:
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Figure 4.2

Theorem 4.8
Let P be a point on a curve G(x, y, z) = 0 in the projective plane. Then one of
the following two conditions holds:

(i) Every line through P intersects G at least twice at P.
(ii) There is a unique line that intersects G more than once at P. Every other
line through P intersects G exactly once there. O

Theorem 4.8 leads to the following definition:

Definition 4.9

Let P be a point on the curve G(x, y,z) = 0 in the projective plane. G is
called singular at P if condition (i) of Theorem 4.8 holds, and nonsingular
at P if condition (ii) holds. When condition (ii) holds, the unique line that
intersects G more than once at P is called the tangent or tangent line to G
at P. [

Intuition supports Definition 4.9. As we noted before Theorem 1.7,
the intersection multiplicity of two curves at a point seems to measure
how closely the curves approach each other there. Accordingly, Defini-
tion 4.9 characterizes the tangent [ to a curve G at a point P as the line
that best approximates the curve there. As in Figure 4.2, we can think of
the multiple intersection of I and G at P as the coalescence of distinct
intersections of G and a secant line m through P.

By Definition 4.9, a curve does not have a tangent at a singular point.
This is a point where the curve has a complicated structure, such as the
origin in Figure 1.1 of the Introduction to Chapter I. In fact, Theorem 4.7
and Definition 4.9 show that (2) of the chapter introduction has a singu-
lar point at the origin because it has no terms of degree less than 2.

We have defined singularities and tangents of curves in terms of inter-
section multiplicities. Because transformations preserve intersection
multiplicities (by Property 3.5), they preserve singularities and tangents
of curves. Specifically, suppose that a transformation maps a curve F to a
curve F' and maps a point P on F to a point P’. Then F is nonsingular at
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P if and only if F’ is nonsingular at P’, and, if so, the transformation
maps the tangent to F at P to the tangent to F’ at P’.

Let g(x,y) be a polynomial, and let (a, b) be a point in the Euclidean
plane. We can write g(x, y) as a sum of powers of x — a and y — b as fol-
lows. By substituting x =x' +a and y =y’ + b in g(x,y) and collecting
terms, we can write

g +ay +b) =) ey’
for real numbers ¢;;. Substituting x’ = x —a and y’ = y — b gives
glvy) =Y ejlx—a)(y—b), (9)

which expands g(x,y) in powers of x —a and y — b. Readers familiar
with multivariable calculus may recognize (9) as the Taylor expansion
of g(x, y) about (a, D).

We use (9) to translate Theorem 4.7 from the origin to any point in
the Euclidean plane.

Theorem 4.10
Let (a, b) be a point on the curve g(x,y) = 0 in the Euclidean plane. We can
write

g y) =s(x—a)+Hy—b) + > eilx—a)(y—Db), (10)

where i+ j = 2 for every term in the sum. Then g is nonsingular at (a,b) if
and only if s and t are not both zero. Moreover, in this case, the tangent to g
at (a,b) is the line

s(x—a)+tly—b) =0. (11)

Proof

We have seen that we can write g(x,y) in the form of (9). Because
gla,b) = 0, the constant term ey in (9) is zero, and we can write g(x, y)
as in (10). Substituting x = x' +a and y = y’ + b in (10) gives

s +ay +b) =¥+t +> ey’

where i+ j > 2 for every term in the sum. By Theorem 4.7, s and t are
not both zero if and only if there is a unique line that intersects
g(x¥' +a,y’ +b) = 0 more than once at the origin, and, if so, sx’ +ty' =0
is that line. Substituting ' = x —a and y = iy’ — b and applying Theorem
3.7(ii) shows that s and t are not both zero if and only if there is a unique
line that intersects g(x, y) more than once at (a, b), and, if so, (11) is that
line. O

As in first-year calculus, we can use implicit differentiation with
respect to x or y to find the tangent line to a curve g(x,y) =0 in the
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Euclidean plane at a point (a, b) on the curve. We claim that this gives
the same tangent lines as Definition 4.9.

By Theorem 4.10, we can write g(x,y) as in (10). Setting this expres-
sion equal to zero and differentiating implicitly with respect to x gives

dy . i iy i 1Ay
4904 30 [ = )y =) e - iy - p Y =0, 12)

where i +j > 2 for every term in the sum. When we evaluate this equa-
tion at (x,y) = (a,b), every term in the sum is zero, since the fact that
i+j > 2 implies that every term in the sum has a factor of x —a or
Y — b. Thus, setting x = a and y = b in (12) gives

dy )
s+t =2 =0.
(dx (a,b)

If t # 0, we can rewrite this equation as

dy
dx

(a,D) t

This shows that the tangent at (a, b), according to first-year calculus, is
y—b=—2(x—a)

which is equivalent to (11).
Similarly, if we write g(x,y) as in (10), differentiate the equation
g(x,y) = 0 implicitly with respect to y, and substitute x =a and y = b,

we obtain
S <dx ) +t=0
aY |(a,v) '

If s # 0, we can rewrite this equation as

dx t

@ (a,b) §

According to first-year calculus, the tangent at (a, b) is
t
— = — - — b
x—a=—<(y=b),

which is again equivalent to (11).

The last two paragraphs show that we can use implicit differentiation
with respect to x or y to find the tangent to g(x, y) = 0 at (a, b) if and only
if the numbers s and ¢ in (10) are not both zero. This occurs if and only if
g is nonsingular at (a, b) (by Theorem 4.10). Moreover, when this occurs,
implicit differentiation with respect to x or y gives the same tangent line
as Definition 4.9, by the last two paragraphs.
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Intuition suggests two reasons why two curves on a point P would
have a multiple intersection there. First, one of the curves could be
singular at P; for example, the curve in Figure 1.1 of the Introduction to
Chapter I, which is singular at the origin, seems to intersect the x-axis
twice there. Second, the two curves could approach each other so closely
near P that they are tangent to the same line there, as in Figure 1.2 of
Section 1. We end this section by formalizing these ideas when one of
the curves is nonsingular at P.

Theorem 4.11

Let F(x,y,z) = 0 and G(x, y,z) = 0 be two curves on a point P in the projec-
tive plane, and assume that F is nonsingular at P. Then Ip(F, G) > 2 if and
only if G is either singular at P or tangent to the same line there as F. Equiv-
alently, Ip(F,G) =1 if and only if G is nonsingular at P and tangent to a
different line there than F.

Proof

Because F is nonsingular at P, it has a tangent there. There is a transfor-
mation that maps P to the origin and maps a second point on the tangent
at P to a second point on the y-axis (by Theorem 3.4). We can replace F
and G with their images under the transformation (by Property 3.5), and
so we can assume that P is the origin and that F' is tangent to the y-axis
x =0 at the origin. We can replace F(x,y,z) and G(x,y,z) with their
restrictions f(x,y) = F(x,y,1) and g(x,y) = G(x,y,1) to the Euclidean
plane (by Property 3.1).

Because f(x,y) = 0 is tangent to x = 0 at the origin, we can write

fx,y) = sx+ h(x, y), (13)

where s # 0 and every term of h has degree at least 2 (by Theorem 4.7
and Definition 4.9). Since every term of f that is not divisible by x is
divisible by y?, we can write

flxy) = ap(x, y) + y*q(y) (14)

for polynomials p (in x and y) and g (in y alone). The constant term of
p(x,y) is the nonzero number s in (13), and so we have

p(0,0) # 0. (15)

Because g = 0 contains the origin, g(x, y) has no constant term, and
every term of g not divisible by x is divisible by y. Thus, we can write

glx y) = xu(x, y) + yv(y) (16)

for polynomials u (in x and y) and v (in y alone).
By (14) and (16), we can rewrite Io(f,g) as

Io(xp + yq, xu + yv), (17)



Exercises 61

where O is the origin (0, 0). Since p(0,0) # 0 (by inequality (15)), we can
multiply the second polynomial in (17) by p without changing the inter-
section multiplicity (by Theorem 1.8). This gives

Io(xp + y*q. xpu + ypv).

We can subtract u times the first polynomial from the second (by Prop-
erty 1.5), which gives

Io(xp + y°q, —y*qu + ypv). (18)

Factoring the second polynomial as y(—yqu + pv) shows that the quan-
tity in (18) equals

Io(xp + y*q,y) + Io(xp + y*q, —yqu + pv) (19)

(by Property 1.6).
We can evaluate the first intersection multiplicity in (19) as follows.
Since y?q is a multiple of y, we have

TIo(xp +y*q,y) = Io(xp,y) (by Property 1.5)
=Io(x,y) (by Theorem 1.8 and (15))
=1 (by Property 1.4).

Together with the previous paragraph, this shows that Ip(f,g) > 2 if and
only if the second intersection multiplicity in (19) is at least 1.
We have

Io(xp + y*q, —yqu + pv) > 1

if and only if pv contains the origin (by Property 1.3), since the other
terms xp, y2q, and —yqu contain the origin. By inequality (15), pv con-
tains the origin if and only if v does. This is equivalent to the condition
that v(y) has no constant term. By (16), this happens exactly when g(x, y)
has no y term. This occurs when g is either singular at the origin or
tangent there to x = 0 (by Theorem 4.7 and Definition 4.9). Since f is
tangent to x = 0 at the origin, the theorem holds. O

Exercises

4.1. Consider the curve ¥’y = x +y. Use Theorem 4.3 and the intersection prop-
erties to find the points of the projective plane where this curve intersects
the following lines and to determine the multiplicity of each intersection.
Determine the total number of intersections, counting multiplicities, and
compare the result with Theorem 4.5. Illustrate your answers with a figure
showing the curve, the line, and the points of intersection.
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4.2.

4.3.

4.4.

4.5.

4.6.

4.7.

I. Intersections of Curves

(a) y=— (b) y=x
(c) y:—X/Z (d) y=4%
(e) y: (f) x=2.
(g) x= (h) The line at infinity.

Follow the directions after the first sentence of Exercise 4.1 for the curve
x%y +y = 2x? and the following lines:

(a) y J—O (b) y=1.
(c) y (d) y=3.
(e) y fX/Z f) y==.
(g) y=2x. (h) x=0.

Follow the directions after the first sentence of Exercise 4.1 for the curve
xy = x> — 1 and the following lines:

(a) y=x+2. (b) y==x.
(c) y=2x—2. (d) y=2x—1.
(e) y==x/2. (f) The line at infinity.

A curve g(x, y) and a point (a, b) are given in each part of this exercise. For
what real number k does (a, b) lie on the curve g(x, y) = k? By differentiat-
ing this equation implicitly with respect to x or y, as discussed after the
proof of Theorem 4.10, determine whether the curve is nonsingular at
(a,b) and, if so, find the equation of the tangent at (a, b).

) %3 — 3xy + 23, (3,1).

) x% +ay? +2y° — 2y, (2,-1).

) x% +6x% + 6xy + 4y — 4y, (—2,2).

) Xy +5x% 4+ 43, (0,2).

) x% — 4wy +y® + 4y, (1,0).

) xy? + 5xy + 2x% — 3y, (1,—1).

) %% —3x%y +y°, (1,2).

h) % — 4x% 4+ 4x — y* + 3y% + 2y, (2,1).

Use Theorems 4.1 and 4.8 and Definition 4.9 to deduce that every line in
the projective plane is nonsingular and equals its tangent at all of its points.

Let F =0 be a curve of degree 3, and assume that F has no factors of
degree 1.
(a) Prove that F has at most one singular point.

(Hint: If P is a singular point of F, and if Q is another point of F,
one possible approach is to use Theorem 4.5 and Definition 4.9 to
determine how many times line PQ intersects F at P and Q.)

(b) Prove that no line is tangent to F at more than one point.
(c) Prove that no line tangent to F contains a singular point of F'.

(a) Let F(x,y,z) be a homogeneous polynomial of degree 2. Prove that the
curve F = 0 in the projective plane is singular at a point P and contains
at least one other point if and only if we can write F = LM for lines
L =0 and M = 0 that contain P. (See the Hint to Exercise 4.6(a).)

(b) Find a homogeneous polynomial F(x,y,z) of degree 2 such that the
curve F = 0 is singular at one point and contains no other point.
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4.8.

4.9.

4.10.

4.12.

4.13.

4.14.

4.15.

4.16.

(a) Let F(x,y,z) be a homogeneous polynomial of degree 4 that has no
factors of degree 1. Assume that there is a point P such that every line
through P intersects F' at least three times at P. Prove that P is the only
singular point of F.

(b) Prove that F(x, y, z) = y®z — x* has no factors of degree 1 and intersects
every line through the origin at least three times there.

Let s and t be positive integers.

(a) Let F(x,y,z) be a homogeneous polynomial of degree n that has no
factors of degree 1. Assume that F' contains two points P and Q such
that every line through P intersects F at least s times at P and every
line through Q intersects F' at least t times at Q. Prove that n > s+ t.

(b) Prove that F(x,y,z) = y*z' — x*™ has no factors of degree 1, intersects
every line through the origin at least s times there, and intersects
every line through (0, 1,0) at least ¢ times there.

Let Fy,...,Fr be homogeneous polynomials, and let P be a point in the
projective plane. Prove that the product Fj---Fx is nonsingular at P if
and only if exactly one of the curves F; = 0 contains P and this curve is
nonsingular at P.

. In the projective plane, let L =0 be a line, and let G =0 be a curve of

degree n. Prove that L is tangent to G at more than n/2 points if and only
if G has L but not L? as a factor.

In the projective plane, let F be a curve of degree n, and let L be a line that

is not contained in F.

(a) Prove that L and F cannot intersect exactly n —1 times, counting
multiplicities, in the projective plane.

(b) More generally, prove that L and F intersect n — 2k times, count-
ing multiplicities, in the projective plane, where k is an integer with
0 < k <n/2. Use the fact, which follows from the Intermediate Value
Theorem, that every polynomial f(x) of odd degree in one variable
has a root over the real numbers.

Let m > 0 and n > 0 be integers such that m <n and n —m is even. Let
S1,. .., 8k be positive integers whose sum is m. Find a curve F = 0 of degree
n such that F cannot be factored as a product of two polynomials of lower
degree, and find a line L = 0 and distinct points P, ..., Px such that L and F
intersect exactly s; times at P; for i =1,...,k and have no other inter-
sections.

Let f(x) be a polynomial in x. Prove that the curve y = f(x) has a singular
point at infinity if and only if the degree of f is at least 3.

Let f(x,y) =0 and g(x, y) = 0 be curves tangent to distinct lines I = 0 and
m = 0 at a point (a, b) in the Euclidean plane. Prove that the real numbers
are matched up with the lines through (a,b) other than I by associating
each number r with the tangent to rf + g at (a, b).

Let f(x,y) and g(x, y) be polynomials, and let (a, b) be a point of the Eucli-

dean plane where the curves f and g intersect.

(a) If f is nonsingular at (a, b) and g is singular at (a, b), prove that f + g is
nonsingular at (a,b) and has the same tangent there as f.
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(b) If f and g are both singular at (a, b), prove that f + g is, as well.

(c) If f and g are nonsingular and tangent to the same line [ at (a, b), prove
that there is a unique real number s such that sf + g is singular at (a, b)
and that, for all other real numbers r, rf + g is nonsingular and tangent
to lat (a,b).

. Let f(x,y) be a polynomial of degree n, and let F(x,y,z) be its homoge-

nization. Let [ be a line that intersects f a total of n times, counting multi-
plicities, in the Euclidean plane. Let A4, ..., A, be the points of intersection
of I and f in the Euclidean plane, with each point listed as many times as [
and f intersect there; for example, if [ and f intersect twice at a point, then
the point appears twice in the list Ay, ..., A,. Let P = (v, w) be a point of [ in
the Euclidean plane.

(a) Iflis a nonvertical line y = mx + b, prove that

f(x,mx+Db) =F(1,m,0)(x —r1) - (x — 1),

where 11, ..., 7, are the x-coordinates of A, ..., A,.

(b) If two points of the Euclidean plane lie on a nonvertical line of slope
m in the Euclidean plane, prove that the distance between the points
is (m2 4 1)V/2 times the absolute value of the difference between their
x-coordinates.

(c) If I is a nonvertical line of slope m, use parts (a) and (b) to prove that
the product of the distances from P to Ay,..., A, is

(m*+1)"2| f(v,w)|
|F(1,m,0)]

Let f(x, y) be a polynomial of degree n. In the Euclidean plane, let a and b
be two lines on a point P, and let ¢ and d be lines parallel to a and b, respec-
tively. (See Figure 4.3, which illustrates the case n = 2.) Let Q be the point
of intersection of ¢ and d. Assume that each of the lines a, b, ¢, d intersects
f a total of n times, counting multiplicities, in the Euclidean plane. Let
Ay, ..., A, be the points of the Euclidean plane where a and f intersect,
with each point listed as many times as a and f intersect there. Define
points B;, C;, D; for i=1,...,n in the same way with respect to the lines
b, c, d. Use Exercise 4.17 to prove that the product of the distances from P
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4.19.

4.20.

4.21.

to the A; divided by the product of the distances from P to the B; equals the
product of the distances from Q to the C; divided by the product of the dis-
tances from Q to the D;.

(In other words, we consider the ratio of the products of the distances
from a point P to the points where two lines through P intersect f. Then
the value of this ratio does not depend on the choice of P so long as the
directions of the lines remain fixed and each line intersects f as many
times as possible in the Euclidean plane. This result is due to Newton,
who used it for n = 2 and n = 3 to study conics and cubics.)

Let H, S, T be three points on a line [ in the Euclidean plane. The division
ratio HS/HT is + the result of dividing the distance from H to S by the
distance from H to T, where the minus sign is used when H lies between
S and T (Figure 4.4) and the plus sign is used otherwise (Figures 4.5 and
4.6). If I is not vertical and H, S, T have x-coordinates h, s, t, prove that

HS s—h
HT t—h'

(This exercise is used in Exercises 4.20-4.22, 6.16-6.20, and 6.22.)

Figure 4.6

Define division ratios as in Exercise 4.19. Let f(x,y) =0 be a curve of
degree n. Let S and T be two points in the Euclidean plane that do not lie
on f. Assume that f intersects line ST at n points A, ..., A, in the Eucli-
dean plane, where each point is listed as many times as f intersects line
ST there. Use Exercises 4.17(a) and 4.19 to prove that

A8 AxS _ f(s§)

where (s,s’) and (t,t') are the (x, y) coordinates of S and T.

Define division ratios as in Exercise 4.19. Use Exercise 4.20 to prove the fol-
lowing result:

Theorem
Let f be a curve of degree n. Let S, T, U be three points in the Euclidean plane
that do not lie on f. Assume that f intersects line ST at n points A, ..., Ay, line
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4.23.

4.24.
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TU at n points By ..., By, and line US at n points Cy, ..., C,, where the points
A, Bi, C; all lie in the Euclidean plane and are listed as many times as f inter-
sects ST, TU, or US there. Then we have

S
7]
~
@)

. A, S BT

AT AT BU B,U CS Cus

1

n

s
c
c

(a) Give a simple statement of the theorem in Exercise 4.21 when n =1,
and illustrate it with a figure. (This result, called Menelaus' Theorem,
relates the ratios in which the three sides of a triangle STU are divided
by their intersections with a line f.)

In the Euclidean plane, let E, F, G, W be four points, no three of which
are collinear. Assume that the lines EW and FG intersect at a point E/,
FW and GE intersect at at a point F’, and GW and EF intersect at a
point G'. Draw a figure to illustrate this arrangement of points and
lines. Prove Ceva’s Theorem, which states that

=

FF FG GF_
EG FFE GF

by applying Menelaus’ Theorem from (a) to triangle EE'F and line GW
and to triangle EE'G and line FW and combining the results.

Let g(x,y) be a nonzero polynomial that contains the origin. Let d be the
smallest degree of a nonzero term of g, and let gs(x, y) be the sum of the
terms of degree d in g.
(a) Why can we factor

g%, y) = (mx +qy)* - (prx + qey) ¥ (%, y)

for distinct lines p;x + q;y = 0, where the s; are positive integers and
7(x,y) is a polynomial that has no factors of degree 1?

(b) Let I=0 be a line through the origin. Use Theorems 1.7, 1.9(ii), and
1.11 to prove that In(l,g) > d if I is one of the lines pix + qiy = 0 and
that Ip(1, g) = d otherwise.

(For example, if g(x,y) = 0 is the curve in (2) of the Introduction to
Chapter I, we have d = 2 and

Sy =4y =(—x+y)x+y.

This exercise shows that every line through the origin except y = x and
y = —x intersects g twice at the origin, and that these lines intersect g
at least three times at the origin. Note the Figure 1.1 suggests that y = x
and y = —x are the lines that best approximate g at the origin. Exer-
cises 1.2 and 1.3 provide further illustrations.)

Use Exercise 4.23 and Properties 3.1 and 3.5 to prove the following result:

Theorem

Let G be a curve and let P be a point in the projective plane. Then there is a
nonnegative integer d such that all but a finite number of lines on P intersect G
exactly d times there. All other lines on P intersect G more than d times there,
and there are at most d such lines.
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P
o
R
A D
C B
Figure 4.7

(We call P a d-fold point of G when the conditions of the theorem hold.
Comparing this theorem with Definition 4.9 shows that d = 1 if and only if
G is nonsingular at P.)

Exercises 4.25-4.29, which we use in Exercises 6.17-6.20, 6.22, and 16.7-16.13, are
based on the following terminology. Four points, P, Q, R, S, no three of which are
collinear, determine a harmonic set A, B; C, D, where A = PQ N RS, B= PR N QS,
C=PSnAB, and D = QR n AB (Figure 4.7).

4.25. Let A, B, C be three collinear points. This exercise shows that there is a
unique point D such that A, B; C, D is a harmonic set. We call D the har-
monic conjugate of C with respect to A and B.

(a) Let P and S be two points collinear with C that do not lie on a line AB.
Describe how to construct points Q, R, D such that P, Q, R, S determine
the harmonic set A, B; C, D.

(b) Let P-S, P'-S, D, D’ be points such that P, Q, R, S determine the har-
monic set A, B; C, D and P, Q’, R’, §' determine the harmonic set A, B;
C, D'. Prove as follows that D = D' (Figure 4.8): show that there is a
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4.26.

4.27.

4.28.
4.29.
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transformation that maps P, Q, R, Sto P', Q’, R’, &, deduce from Exer-
cise 3.11(b) that this transformation fixes every point of line AB, and
conclude that D = D'.

Let A, B; C, D be a harmonic set, as defined before Exercise 4.25, and as-
sume that A and B lie in the Euclidean plane. Prove that C lies at infinity
if and only if D is the midpoint of A and B.

(Hint: One possible approach is to use Exercise 4.25 and its analogue
with C and D interchanged and choose P and S so that ABPS is a square.)

Let A, B, C, D be four collinear points in the Euclidean plane. Define divi-

sion ratios as in Exercise 4.19.

(a) Prove that CA/CB # DA /DB by arguing geometrically or by using Exer-
cise 4.19 to argue algebraically.

(b) Prove that A, B; C, D is a harmonic set if and only if

CA/CB = —DA/DB. (20)

(Equation (20) shows that C and D divide A and B internally and externally
in the same ratio. If A, B; C, D is a harmonic set, Exercise 4.25 implies that
it can be determined by points P, Q, R, S in the Euclidean plane. Applying
Menelaus’ Theorem from Exercise 4.22(a) to triangle PAB and line QR, ap-
plying Ceva’s Theorem from Exercise 4.22(b) to the four points P, A, B, S,
and combining the results gives (20). Part (b) follows from this, part (a), Ex-
ercise 4.25, and possibly Exercise 4.26.)

Use Exercise 4.25 to prove the theorem in Exercise 2.10.

Let A, B; C, D be a harmonic set.

(a) Prove that no two of the points A, B, C, D are equal. (One or more of
the Exercises 3.10, 3.14, 4.26, and 4.27 may help.)

(b) Prove that C, D; A, B is a harmonic set. Illustrate this fact with a figure
that shows point P-S that determine a harmonic set A, B; C, D and also
shows points P'-8' that determine the harmonic set C, D; A, B. (See
part (a) and Exercise 3.15.)
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CHAPTER

Introduction and History
Introduction

We developed the basic machinery for studying curves in Chapter I. We
considered curves of degree 1, lines, in Section 4. We study curves of
degree 2, conics and their degenerate forms, in this chapter. We consider
curves of degree 3, cubics, in Chapter III.

We define a conic in Section 5 to be a nondegenerate curve of degree
2. We prove by completing squares that we can transform all conics into
the same curve —for example, the unit circle or the parabola y = x?. This
is the algebraic equivalent of the geometric fact that all conics are
sections of cones and, therefore, projections of circles. For example,
Figure II.1 shows an ellipse K as a section of a cone and, consequently,
as the projection of a circle C through a point O. Figures 11.2 and I1.3
show a parabola and a hyperbola as sections of a cone.

Because we can transform every conic into the parabola y = x?, a
statement holds for all conics if it is true for y = x? and is preserved by
transformations. We use this idea in Section 5 to prove that a conic inter-
sects any curve of degree n that does not contain it at most 2n times,
counting multiplicities. This result holds for y = x? because its intersec-
tions with a curve f(x,y) = 0 of degree n correspond to the roots of the
polynomial f(x, x?), which has degree at most 2n (although intersections
at infinity must be considered as well).

We use a similar approach in Section 6 to prove that we can ‘“peel off a
conic” from the intersection of two curves of the same degree. Specifi-

69
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5

Figure II.1

Figure II.2

Figure I1.3

cally, if two curves G and H of degree n intersect a conic at the same 2n
points, then the remaining points of intersection of G and H are the
points where each curve intersects a curve of degree n — 2. This imme-
diately gives Pascal’s Theorem, which states that the three pairs of oppo-
site sides of a hexagon inscribed in a conic intersect in collinear points.
By considering multiple intersections, we obtain variations of Pascal’s
Theorem where sides of the hexagon are replaced by tangents to the
conic. We also show that we can “peel off a line,” and we use this result
to prove Pappus’ Theorem about a hexagon inscribed in two lines and, in
Section 9, to derive the associative law of addition on a nonsingular, irre-
ducible cubic.

We use homogeneous coordinates in Section 7 to show that we can
dualize results about the projective plane by interchanging points and
lines. Because this process interchanges the points of a conic with the
tangents of a conic, Pascal’s Theorem dualizes to Brianchon’s Theorem,
which states that the three pairs of opposite vertices of a hexagon cir-
cumscribed about a conic determine concurrent lines. We end Section 7
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by using transformations between lines to construct the envelope of tan-
gents of a conic.

History

Greek mathematicians such as Menaechmus, Aristaeus the Elder, and
Euclid founded the study of conics in the fourth century B.c. Apollonius
brought the subject to a high point in the third century s.c. By consider-
ing a conic as a section of a circular cone, he characterized the points of
the conic by their distances from two lines. He deduced a wealth of geo-
metric properties from this characterization, which is equivalent to the
present-day equation of a conic. Apollonius, however, worked entirely
in geometric terms, without algebraic notation.

Apollonius proved that a family of parallel chords of a conic have mid-
points that lie on a line. Such a line is called a “diameter” of the conic,
and Apollonius developed a number of connections between diameters
and tangents. He also derived many properties of the foci of ellipses
and hyperbolas. Apollonius founded the study of the “polar” of a point,
which is a line determined by the point, with respect to a conic. Some of
his results on polars are included in Exercise 16.7.

Euclid and Apollonius worked in Alexandria, the Egyptian city
founded by Alexander the Great to be the capital of his empire and the
intellectual center of many civilizations. Alexandria’s distinguished tradi-
tion of geometry was revived in the third century a.n. by Pappus. We
prove his theorem on hexagons inscribed in two lines as our Theorem
6.5. He also gave a geometric characterization of harmonic sets of points,
which had been defined until then in terms of relative distances between
points, as in Exercise 4.27(b). The description of harmonic sets that we
gave before Exercise 4.25 is essentially that of Pappus.

In the first half of the 1600s, Girard Desargues reshaped the study of
conics by introducing points at infinity and projections between planes.
As in the discussion accompanying Figures II.1-11.3, the fact that all
conics are sections of cones means that they are all projections of circles.
Accordingly, if a property of circles is preserved by projections, then it
holds for all conics. Desargues used this idea to redo and unify Apollo-
nius’ work on conics. He noted that diameters of conics are the polars
of points at infinity, and he thereby derived many of Apollonius’ results
on diameters from properties of polars (as in Exercise 16.8). Desargues’
Involution Theorem, our Exercise 6.17, characterizes the pairs of points
where the conics through four given points intersect a given line. In
1639, Blaise Pascal proved his famous theorem about hexagons inscribed
in conics, our Theorem 6.2, by using Desargues’ technique of projecting
between planes to extend results from circles to conics.

At roughly the same time, Fermat began to use analytic geometry to
study conics. He showed that equations of certain standard forms repre-
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sent conics, and he claimed that any second-degree equation can be re-
duced to one of these forms. In 1655, John Wallis proved conclusively
that conics are exactly the nondegenerate curves of degree 2. By replac-
ing geometric reasoning with algebra, he wrote the first treatment of
conics that derived their properties directly from their equations.

In the first half of the 1800s, renewed interest in synthetic geometry
centered around projective geometry and conics. Charles Brianchon de-
duced his theorem on hexagons circumscribed about conics, our Theo-
rem 7.6, by taking polars of the points in Pascal’'s Theorem on inscribed
hexagons. He resolved longstanding problems about determining conics
specified by five pieces of information, such as five points on the conic
or four points and a tangent. Such problems date back at least to Pappus,
and they fascinated Newton, who found complicated solutions based on
analytic Euclidean geometry. Brianchon used synthetic projective geom-
etry to obtain beautifully simple answers by applying Pascal’s Theorem
and its special cases, the results that follow from these by taking polars,
and Desargues’ Involution Theorem. Some of the simpler cases he ana-
lyzed are discussed after the proof of Theorem 6.2 and in Exercises 6.4-
6.6 and 7.4-7.6.

Brianchon’s use of polars is a special case of the duality principle,
which states that we can interchange the roles of points and lines in the
projective plane. Building on Brianchon’s work, Jean-Victor Poncelet
and Jacob Steiner developed duality as a general principle of projective
geometry. Steiner and Michel Chasles gave geometric constructions of
conics and, dually, their envelopes of tangents. Our Theorem 7.8 trans-
lates results of Steiner and Chasles into analytic form, using transforma-
tions between lines to construct envelopes of conics.

Julius Plicker clarified the logical basis of the duality principle when
he justified the principle analytically in 1830. Following his approach,
we show in Section 7 that we can simultaneously interchange the point
(p,g,7) and the line px + qy + rz = 0 for all triples p, g, r of real numbers
that are not all zero. We prove that this operation interchanges points of
conics and tangents of conics.

Pliucker’s role in the development of algebraic geometry was pro-
found. Another of his key contributions was abridged notation, the tech-
nique of using a single letter to designate a polynomial instead of writing
out every term. This technique is vital in studying curves because it
makes algebraic combinations of polynomials easy to write. In partic-
ular, the families of curves rF + G are important, where F and G are
given curves of the same degree and r varies over all numbers. We use
such families in Theorems 5.10, 6.1, 6.4, and 13.4 and Exercises 5.8,
5.11-5.15, 13.14, 14.8, 14.9, 14.15, and 16.28. Gabriel Lamé introduced
abridged notation and the families vF + G in 1818, a decade before
Pliicker, and Etienne Bobillier extended Lamé’s work at the same time
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as Pliicker. Nevertheless, it was Plicker who demonstrated the true
power of abridged notation.

§5. Conics and Intersections

Conics are nondegenerate curves of degree 2 in the projective plane. We
begin our study of conics in this section by proving that all conics can
be transformed into one another. We discuss how to deduce theorems
in the Euclidean plane about ellipses, parabolas, and hyperbolas from
results about conics. Because any conic can be transformed into the
parabola y = x?, we can use Theorem 4.3 to deduce that a conic inter-
sects any curve of degree n that does not contain it at most 2n times,
counting multiplicities. It follows that any five points in the projective
plane, no three of which are collinear, lie on a unique conic.

Our first goal is to classify the curves of degree 2 in the projective
plane. These are the curves

ax* + bxy + cy* + dxz + eyz + fz* = 0, (1)

where the coefficients a-f are not all zero. Setting z =1 in (1) gives the
curves

ax* +bxy+cy* +dx+ey+ f =0, (2)

where a-f are not all zero. These are the curves of degree at most 2
in the Euclidean plane. They include two lines, one line doubled (with
equation (px +qy +r)?> =0 for p # 0 or g # 0), one line, one point, and
the empty set. We call these curves degenerate. Many precalculus and
calculus books use rotations and translations to show that ellipses, parab-
olas, and hyperbolas are exactly the nondegenerate curves in the Eucli-
dean plane given by (2). We prove the projective analogue of this result:
any curve of degree 2 in the projective plane whose restriction to the
Euclidean plane is nondegenerate can be transformed into x? + y? = z2,
the extension of the unit circle ¥* + y* = 1 to the projective plane. Trans-
formations eliminate the distinctions among circles, ellipses, parabolas,
and hyperbolas by interchanging points at infinity with points of the
Euclidean plane and altering distances and angles in the Euclidean plane.
For any real numbers s and t, the equations

/

X =x, Yy =sx+y+tz, 7z =z (3)

give a transformation because they are equivalent to the equations

x=x' y=—sx+y —tz, z=27. (4)
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Likewise, the equations

X =x+sy+tz, y =y, Z =z (5)
give a transformation. We can also use transformations to interchange
x, y, and z and to multiply them by nonzero numbers (by the discussions
accompanying (8) and (9) of Section 3).

Theorem 5.1
Any curve of degree 2 in the projective plane can be transformed into one of
the following curves:

a) x> =0, a doubled line;
b) ¥+ y? =0, a point;
c) x> —y? =0, two lines;
) X2+ y? + 2% = 0, the empty set; and
e) x2 4+ y? — 22 = 0, the unit circle.

Proof
A curve of degree 2 has equation

ax* + bxy + cy* + dxz + eyz + fz* = 0, (6)

where the coefficients a-f are not all zero. If the coefficients of x?, y?,
and z2 are all zero, the equation has the form

bxy + dxz + eyz = 0. (7)

Because the coefficients are not all zero, we can assume that b # 0
(by using a transformation to interchange the variables, if necessary).
Taking s = —1 and t =0 in (3) and (4) gives a transformation that re-
places y with ¥’ + y’ and takes (7) to

bx(x+y) +dxz +e(x +y)z =0,

where the coefficient of ¥? is now nonzero.

Thus, we can assume that the coefficients of x?, y?, and z? in (6)
are not all zero. By interchanging the variables with a transformation, if
necessary, we can assume that the coefficient a of ¥? is nonzero. We can
divide (6) by a without changing the curve, as discussed after the proof of
Theorem 3.6. By adjusting the values of b-f, we can assume that a = 1.
We can eliminate the xy and xz terms by completing the square in x and
rewriting (6) as

b da\ ., )
xtoytoz) oy +eyz+ fz°=0
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for revised values of ¢, e, and f. We transform this equation into
eyt teyz+ 22 =0 (8)

by setting ¥’ = x+ (b/2)y + (d/2)z (as in (5)). If ¢, e, and f are all zero,
the curve is x> = 0, and it consists of two copies of the line x = 0, as in
part (a) of the theorem’s statement.

Thus, we can assume that c, ¢, and f are not all zero in (8). If
¢ =0=f, then e is nonzero, and taking s = 0 and t = —1 in (4) replaces
y with y' + z’" and transforms (8) into

x> +e(y+z)z=0,

where the coefficient of z2 is nonzero. Thus, we can assume that ¢ and f
are not both zero in (8). By interchanging y and z with a transformation,
if necessary, we can assume that c is nonzero. We can write ¢ = +s2 for
s = |c¢|*/? > 0. Replacing y with y/s (as in (9) of Section 3) transforms (8)
into

¥ty teyz+ 22 =0 (9)

for a revised value of e.
We can eliminate the yz term from (9) by completing the square in y,
which gives

2
X2i<yi ;z> +fZZ:O
for a revised value of f. Setting y' =y + (¢/2)z (as in (3)) gives

X +yt+fh=0. (10)

If f = 0, we have x* + y* = 0. The curve x* + y? = 0 consists of one point
(0,0,1) as in (b) of the theorem’s statement. The curve

0=x"—-y'=@x—ylx+y)

consists of the two lines y = x and y = —x (as in (c)).

Thus, we can assume that f is nonzero in (10). We can write f = +t2
for t = |f|'/? > 0. Replacing z with z/t (as in the discussion accompany-
ing (9) in Section 3) transforms (10) into

X +yr+z2=0.

The two + signs are independent, which gives four possibilities. The
graph of x* + y? 4+ z> = 0 is the empty set (as in (d)), because (0, 0,0) is
not a point in the projective plane. The curve

ryt—z2=0 (11)
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is the unit circle 2 + y? = 1 in the Euclidean plane. Interchanging y and
z with a transformation takes x*> — y? + z2> = 0 into (11), as well. Inter-
changing x and z transforms x> — y? — z2 = 0 into z% — y> — x> = 0, and
multiplying this equation by —1 (as discussed after the proof of Theorem
3.6) also gives (11). O

We define a conic to be the set of points on a curve of degree 2 in the
projective plane that does not consist of two lines, a doubled line, a
point, or the empty set. It is clear from this definition that transforma-
tions preserve conics.

Theorem 5.1 shows that any conic can be transformed into a circle.
Conversely, any curve that can be transformed into a circle has degree
2 (since transformations preserve degree) and does not consist of two
lines, a line doubled, a point, or the empty set, and so it is a conic.
Thus, conics are exactly the curves in the projective plane that can be trans-
formed into circles.

As we observed after (2), ellipses, parabolas, and hyperbolas are
exactly the nondegenerate restrictions to the Euclidean plane of curves
of degree 2 in the projective plane. If we take two lines, a doubled line,
a point, or the empty set in the projective plane, the restriction to the
Euclidean plane is degenerate (as defined after (2)). On the other hand,
if a curve in the projective plane can be transformed into a circle, its
restriction to the Euclidean plane is nondegenerate (since, like a circle,
such a curve contains infinitely many points, no three of which are col-
linear). Thus, Theorem 5.1 shows that ellipses, parabolas, and hyperbolas
are exactly the restrictions to the Euclidean plane of conics in the projective
plane.

An ellipse can be translated and rotated about the origin so that it has
the equation

XZ yZ
=+

=1 (12)

for positive numbers a and b (Figure 5.1). This extends to the curve

XZ yz )
2 =7

-

Figure 5.1
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Figure 5.2

in the projective plane. If we set z = 0 in this equation, we see that x and
y must also be zero. Since (0, 0,0) does not represent a point in homo-
geneous coordinates, an ellipse has no points at infinity, as its shape
suggests. The ellipse in (12) can obviously be transformed into the unit
circle by substituting ax for x and by for y.

A parabola can be translated and rotated about the origin so that it has
the equation

y=ax’ (13)

for a > 0 (Figure 5.2). This extends to the curve

yz = ax*

in the projective plane. Setting z = 0 in this equation gives x = 0, and so
(0,1, 0) is the unique point at infinity on the extension of the parabola to
the projective plane. Note that the lines of the Euclidean plane that con-
tain this point at infinity are exactly the vertical lines x = ¢ (i.e., x = ¢z)
for all real numbers c, the lines parallel to the axis of symmetry of the
parabola. Figure 5.2 suggests that a parabola has the general shape of
an ellipse when the point at infinity is added.

A hyperbola can be translated and rotated about the origin so that it
has the equation

XZ yZ

for positive numbers a and b (Figure 5.3). This extends to the curve

2 2
X Y 2

9 _,
a’ b?

in the projective plane. Testing (1,s,0) and (0,1,0) in this equation
shows that the hyperbola contains two points at infinity (1, +b/a,0).
These are the points at infinity on the two asymptotes y = +(b/a)x
of the hyperbola, and so the lines of the Euclidean plane that contain
one of these points are the lines parallel to one of the asymptotes. The
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' y")

8 oy

Figure 5.4

two points at infinity join the two branches of the hyperbola into a shape
resembling an ellipse, as in the discussion accompanying Figures 3.1 and
3.2; the point at infinity on each asymptote seems to join the two ends of
the hyperbola that approach the asymptote.

A rotation of the Euclidean plane about the origin extends to a trans-
formation of the projective plane. In fact, if a point (x, y) of the Euclidean
plane has polar coordinates (r,o), we have x =rcosa and y = rsina
(Figure 5.4). If we rotate the plane through angle 0 about the origin,
(x,y) maps to the point (¥',y’) with polar coordinates (r,o+ 6). The
angle-addition formulas of trigonometry show that

x' =rcos(a+ 0) =rcosoucosf — rsinasin
=xcosf — ysin,
Yy =rsin(a+ 60) = rcosasin @ + rsin o cos 0
= xsin 0 + ycos 0.
Thus, the linear change of variables
¥ = (cosO)x — (sin 0)y,
y' = (sin0)x + (cos )y, (15)

z =2

5
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extends the rotation to the projective plane. This change of variables is
a transformation because we can reverse it by replacing 6 with —0 and
interchanging (x,y, z) and (¥, y’, ).

The equations in (15) show that a rotation of the Euclidean plane
about the origin extends to a transformation of the projective plane that
maps the points at infinity among themselves. Similarly, the equations
in (7) of Section 3 show that a translation of the Euclidean plane extends
to a transformation of the projective plane that maps the points at infin-
ity among themselves. Thus, we can summarize the discussion from the
proof of Theorem 5.1 and on as follows. The restriction of a conic to the
Euclidean plane is an ellipse, parabola, or hyperbola, depending on whether
the conic has 0, 1, or 2 points at infinity. All ellipses, parabolas, and hyper-
bolas can be obtained in this way. The lines of the Euclidean plane through
the unique point at infinity on a parabola are exactly the lines parallel to the
axis of symmetry of the parabola. The lines of the Euclidean plane through
either of the two points at infinity on a hyperbola are exactly the lines parallel
to one of the asymptotes. The discussions accompanying Figures I1.1-11.3
and 5.1-5.3 help to explain the fact that all conics can be transformed
into circles.

The general results about the intersections of a line and a curve in
Section 4 specialize to the following theorem about the intersections of
a line and a conic. Let tan A denote the tangent to a curve at a point A.

Theorem 5.2

Let A be any point on a conic K in the projective plane. Then K is nonsingu-
lar at A, and every line through A intersects K exactly twice, counting multi-
plicities. The tangent at A intersects K only at A, and it intersects twice there.
Every other line [ through A intersects K once at A and once at another point
(Figure 5.5).

Proof

Let K have equation G =0, where G(x,y,z) is a homogeneous poly-
nomial of degree 2. G does not have a polynomial of degree 1 as a factor;
otherwise, G would factor as a product of two polynomials of degree 1,
and K would consist of two lines or one line doubled, contradicting the

tan A

Figure 5.5
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definition of a conic. Thus, K intersects any line at most twice, counting
multiplicities (by Theorem 4.5).

K contains infinitely many points other than A (since it can be trans-
formed into the unit circle (by Theorem 5.1)). Let B be a point of K other
than A. Because line AB intersects K at most twice, counting multi-
plicities, it intersects K once at A and once at B. It follows from Theorem
4.8 and Definition 4.9 that K is nonsingular at A and that the tangent at A
intersects K only at A. The tangent at A intersects K exactly twice at A,
since the intersection multiplicity at A is at most two (by the first para-
graph of the proof), and it is at least two (by Definition 4.9).

Let [ be any line through A other than tan A. We claim that [ and K
intersect at a point other than A. To see this, we transform two points
of I to two points on the x-axis y = 0 (by Theorem 3.4), and so we can
assume that [ is the line y = 0. Because the polynomial G giving K does
not have y as a factor (by the first paragraph of the proof), Theorem 4.4
states that the number of times that [ and K intersect, counting multi-
plicities, is 2 minus the degree of a polynomial r(x) that has no roots.
Since [ and K intersect at A, r(x) has degree at most 1. Thus, since r(x)
has no real roots, it must be constant, and so I and K intersect exactly
twice, counting multiplicities. Because I and K intersect exactly once at
A (by Theorem 4.8(ii) and the assumption that [ # tan A), they also inter-
sect at another point. O

We could also have proved Theorem 5.2 by transforming K into the
unit circle (by Theorem 5.1) and observing that the theorem obviously
holds for the unit circle.

Theorem 5.2 shows that any line [ intersects a conic in at most
two points. When [ is the line at infinity, this confirms that every conic
restricts to an ellipse, a parabola, or a hyperbola in the Euclidean
plane. Moreover, a conic intersects the line at infinity in only one point
if and only if it is tangent to the line at infinity (by Theorem 5.2). Thus, a
conic is a parabola if and only if it is tangent to the line at infinity (Figure
5.2).

We have seen that the two points at infinity on the hyperbola in
(14) lie on the asymptotes y = +(b/a)x (Figure 5.3). The asymptotes
do not intersect the hyperbola in the Euclidean plane (since substituting
+(b/a)x for y makes the left side of (14) zero). Thus, each asymptote
intersects the hyperbola at exactly one point of the projective plane, a
point at infinity. It follows from Theorem 5.2 that the asymptotes of a
hyperbola are the tangents at the two points at infinity on the hyperbola.

We use these ideas to obtain results about ellipses, parabolas, and
hyperbolas from theorems about conics by taking the line at infinity in
various positions. For example, consider the following result, which we
will prove in Theorem 7.7:
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Figure 5.7

Theorem 5.3

In the projective plane, let A, C, E be three points on a conic. Set A' =
tanCntanE, C' =tanENtanA, and E' =tan A ntanC. Then the lines
AA', CC', EE' are concurrent at a point P (Figure 5.6). O

Suppose, for example, that we take CE to be the line at infinity. Be-
cause the conic now has two points C and E at infinity, it is a hyperbola,
and the tangents at C and E are the asymptotes ¢ and e, as discussed be-
fore Theorem 5.3. A’ = ¢ N e is the point where the asymptotes intersect
(Figure 5.7). C' =entan A and E' = tan A n ¢ are the points where the
tangent at A intersects the asymptotes. Because C is the point at infinity
on ¢, CC’ is the line through C’ parallel to c. Likewise, since E is the point
at infinity on e, EE’ is the line through E’ parallel to e. Thus, Theorem 5.3
gives the following result when CE is the line at infinity:

Theorem 5.4

In the Euclidean plane, let A be any point on a hyperbola with asymptotes
c and e. Let A' be the point of intersection of the asymptotes, and let C' and
E' be the points where the tangent at A intersects the asymptotes e and c,
respectively. Then the line AA, the line through C' parallel to ¢, and the line
through E' parallel to e lie on a common point P (Figure 5.7). ]
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We will prove after Theorem 7.5 that no three tangents of a conic
are concurrent in the projective plane. In the notation of Theorem 5.4,
this implies that tan A does not contain A’ = ¢ n e (Figure 5.7), since the
asymptotes ¢ and e are tangent to the hyperbola at points at infinity.
Thus, C' = tan A ne and E' = tan A N ¢ are points on ¢ and ¢ other than
A'. Together with the fact that P lies on the line through C’ parallel to ¢
and on the line through E’ parallel to e, this shows that PC'A'E’ is a par-
allelogram. Because the diagonals of a parallelogram bisect each other,
A = PA'nC'E' is the midpoint of C’' and E’. This gives the following
simple restatement of Theorem 5.4:

Theorem 5.5

In the Euclidean plane, any point A on a hyperbola is the midpoint of the
points C' and E' where the tangent at A intersects the asymptotes (Figure
5.8). O

As another example of the transfer of results about conics from the
projective to the Euclidean plane, we take tan E in Theorem 5.3 to be
the line at infinity. Then the conic restricts to a parabola in the Eucli-
dean plane (as discussed before Theorem 5.3). A’ = tanC ntanE is the
point at infinity on tanC, and C’ = tanE ntan A is the point at infinity
on tan A. Thus, AA’ is the line m through A parallel to tan C, and CC’ is
the line n through C parallel to tan A (Figure 5.9). EE’ is now the line
through E’ = tan A n tan C parallel to the axis of symmetry of the parab-
ola (by the discussion accompanying Figure 5.2, since E is the point at
infinity on the parabola). Thus, we obtain the following result from
Theorem 5.3 by taking tan E to be the line at infinity:

Theorem 5.6

In the Euclidean plane, let A and C be two points on a parabola. Let | be
the line through E' = tan A ntan C parallel to the axis of symmetry of the
parabola. Let m be the line through A parallel to tan C, and let n be the
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Figure 5.10

line through C parallel to tan A. Then [, m, and n lie on a common point P
(Figure 5.9). O

As we noted after Theorem 5.4, we will show after Theorem 7.5 that
no three tangents of a conic are concurrent in the projective plane. It
follows that no two tangents of a parabola are parallel in the Euclidean
plane; otherwise, they would intersect at a point on the line at infinity,
which is also tangent to the parabola. This observation ensures that the
point E' =tan A ntan C in Theorem 5.6 exists in the Euclidean plane.
A,C, and E' are three distinct points in Theorem 5.6, since tan A and
tan C intersect the parabolas only at A and C, respectively, by Theorem
5.2.

We can restate Theorem 5.6, like Theorem 5.4, in a particularly
simple way. Since P lies on the line through A parallel to tan C and on
the line through C parallel to tan A, it follows from the previous para-
graph that APCE' is a parallelogram in Theorem 5.6 (Figure 5.9). Be-
cause the diagonals PE’ and AC of the parallelogram bisect each other,
PE’ contains the midpoint M of A and C (Figure 5.10). Then ME' = PE'
is the line [ through E’ parallel to the axis of symmetry of the parabola.
Thus, we can restate Theorem 5.6 as follows:
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E

Figure 5.11

Theorem 5.7

In the Euclidean plane, let A and C be two points on a parabola. Let M be
their midpoint, and let E' be the intersection of the tangents at A and C.
Then the line ME' is parallel to the axis of symmetry of the parabola (Figure
5.11). O

Our next goal is to derive analogues of Theorems 4.4 and 4.5 with
conics in place of lines. We prove that a conic intersects a curve of de-
gree n which does not contain it at most 2n times in the projective plane,
counting multiplicities. We start with the conic y = x?. Substituting x* for
y in a polynomial g(x,y) of degree n gives a polynomial g(x, x*) of degree
at most 2n. Thus, y = x? intersects g(x,y) = 0 at most 2n times, counting
multiplicities, in the Euclidean plane (by Theorem 4.3). Extending this
result to the projective plane gives the following analogue of Theorem
4.4 with the parabola y = x? replacing the line y = 0:

Theorem 5.8
Let G(x,y,z) be a homogeneous polynomial of degree n that does not have
yz — x? as a factor. If we set g(x,y) = G(x,y, 1), we can write

g, x%) = (x —an)™ - (x — ay)*7() (16)

for distinct real numbers a;, positive integers s;, and a polynomial r(x) that
has no real roots. Then the number of times, counting multiplicities, that
yz = x* and G(x,y, z) = 0 intersect in the projective plane is 2n minus the

degree of r(x).

Proof
If we could write

gxy) = (y— x")h(xy)

for a polynomial h(x,y), multiplying terms by appropriate powers of z
would show that

G<X>y: Z) = (yz - X2>H<X,JJ> Z)
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for a homogeneous polynomial H(x,y, z). Thus, since yz — x? is not a
factor of G(x,y, z), y — x* is not a factor of g(x,y). Then g(x, x?) is nonzero
(by Theorem 1.9(ii)), and we can let d be its degree.

Factoring g(x,x2) as in (16) shows that the degree d of g(x, x?) minus
the degree of r(x) equals s; + - - - + s,. This sum is the number of times,
counting multiplicities, that yz = x? intersects G(x, y, z) = 0 in the Eucli-
dean plane (by Theorems 3.7(iii) and 4.3).

We claim that the number of times, counting multiplicities, that
yz = x? intersects G = 0 at infinity is 2n — d. We add this to the number
of intersections in the Euclidean plane, which is d minus the degree of
r(x) (by the previous paragraph). Then the total number of intersections
in the projective plane is 2n minus the degree of r(x), as the theorem
asserts.

To prove the claim, we count the intersections of yz = x?> and G = 0
at infinity. The only possible point of intersection is (0, 1, 0), since this
is the only point at infinity on yz = x2. To send (0,1,0) to the origin
(0,0,1), we interchange y and z with a transformation (as in the discus-
sion of (8) of §3). This gives

1(0,1,0)(142 - Xza G(Xa Y, Z)) = 1(0,0,1)(21/ - Xz’ G<Xa Z, y))
(by Property 3.5). Looking at the right side in the Euclidean plane gives
I(O,O)<y - XZ: G<X5 17 y))

(by Property 3.1). This equals the least degree of a nonzero term of
G(x,1,x%), by Theorem 1.11. (Theorem 1.11 applies because we are
about to see that G(x,1,x?) is nonzero, and so G(x,1,y) does not have
y — x% as a factor.)

Since G is homogeneous of degree n, we can write

Glx,y,z Zeyxyz” = (17)
for real numbers ¢;. It follows that
gxy) = Gy, 1) =Y ey’
and
=) e = ety

Collecting terms shows that the degree d of g(x, x?) is the largest integer
d such that the sum of all the e; with i 4- 2j = d is nonzero.
Substituting 1 for y and x? for z in (17) shows that

X,l,X § :61 i Zn 2i—2j — § :61']')(2”7172].

Since 2n — i — 2j decreases as i+ 2j increases, the smallest degree of a
nonzero term of G(x, 1, x¥?) is 2n — d, where, as in the previous paragraph,
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d is the largest integer such that the sum of all the ¢; with i +2j=d is
nonzero. By the second-to-last paragraph, yz = ¥* and G(x,y,z) = 0 inter-
sect 2n — d times at infinity, as claimed. O

Theorem 5.1 and the discussion after its proof show that the parabola
yz = x* can be transformed into the unit circle x* 4+ y? = z2. Since every
transformation can be reversed, we can also transform the unit circle
into the parabola. Specifically, substituting

s y:y’—z’ z Yy +z
’ 2 7 2

(18)

in x2 + y* = z% gives ¥'* = y'z’. This change of variables is a transforma-
tion because the equations in (18) can be rewritten as

/

X=X, y/:y+z7 Z,:—y-f-Z.

Any conic can be transformed into yz = x?, since it can be trans-

formed first into the unit circle and then into yz = x¥* (by Theorem 5.1
and the previous paragraph). Transformations preserve intersection
multiplicities and factorizations of polynomials (by Property 3.5 and the
discussion before Theorem 4.5). Thus, Theorem 5.8 implies the follow-
ing analogue of Theorem 4.5:

Theorem 5.9

Let K = 0 be a conic, and let G = 0 be a curve of degree n. If K is not a factor
of G, then K =0 and G = 0 intersect at most 2n times, counting multi-
plicities, in the projective plane. ]

It follows from Theorem 5.9 that five points, no three of which are
collinear, determine a unique conic.

Theorem 5.10
Five points in the projective plane, no three of which are collinear, lic on
exactly one conic.

Proof
Let A-E be five points in the projective plane, no three of which are
collinear. Let T, U, V, W be homogeneous polynomials of degree 1
such that T=0, U =0, V=0, W = 0 are the lines AB, CD, AC, BD, re-
spectively (Figure 5.12). The products TU and VW are homogeneous
polynomials of degree 2 such that the curves TU =0 and VW = 0 are
two pairs of lines that both contain A, B, C, D.

Let E have homogeneous coordinates (f,g,h). Since no three of the
points A-E are collinear, E does not lie on T or U, and so

T(f,g,WU(f,g,h) #0.
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Figure 5.12

Thus, there is a real number r such that

rT(f,8, WU(f, g h) + V(f,g, )W(f,g h) =0,

and so E lies on the curve rTU + VW = 0. A-D lie on this curve as well,
since they lie on both TU = 0 and VW = 0.

A and B are the only two points of T on the curve VW =0 (by
Theorem 2.1, since no three of the points A-D are collinear), but every
point of T lies on —rTU = 0. Thus, the polynomials VW and —rTU are
distinct. Then rTU + VW is nonzero, and so it is a homogeneous poly-
nomial of degree 2.

We have shown that *TU + VW is a curve of degree 2 that contains
A-E. Since no three of the points A-E are collinear, no two lines contain
all five of these points. Accordingly, a curve of degree 2 containing A-E
cannot consist of two lines, a doubled line, a point, or the empty set.
Thus, the curve of degree 2 ¥TU + VW = 0 that contains A-E is a conic,
by Theorem 5.1.

We must prove that A-E cannot lie on more than one conic. In fact,
if K =0 and K’ = 0 are conics that both contain A-E, they intersect at
least five times (by Theorem 3.6(iii)). Then the polynomials K and K’ of
degree 2 are each multiples of the other (by Theorem 5.9). It follows that
K = tK' for a nonzero constant t, and so K = 0 and K’ = 0 are the same
conic (as discussed after Theorem 3.6). Thus, A-E lie on a unique conic.

O

A line and a conic intersect at most twice (by Theorem 5.2), and so no
three points on a conic are collinear. Thus, Theorem 5.10 shows that a
conic is determined by any five of its points. Theorem 5.2 shows the
need for the hypothesis in Theorem 5.10 that no three of the points are
collinear if five points are to lie on a conic.

Exercises

5.1. State the version of Theorem 5.3 that holds in the Euclidean plane when E
is the only point at infinity named. Illustrate the result you state with a
figure in the Euclidean plane. (Note that the conic restricts to a hyperbola
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5.2.

5.3.

II. Conics

in the Euclidean plane because it has at least one point at infinity and is not
tangent to the line at infinity. The second point at infinity on the hyperbola
is unnamed in the theorem.)

The following result is proved in Exercise 6.1:

Theorem

In the projective plane, let A, C, D, E, F be five points on a conic. Then the
points Q =tan A N DE, R = ACNEF, and S = CD n FA are collinear (Figure
5.13).

State the version of this theorem that holds in the Euclidean plane in the
following cases. Illustrate each result you state with a figure.
a) A is the only point at infinity named.
b) F is the only point at infinity named, and the conic is a parabola.
¢) F is the only point at infinity named, and the conic is a hyperbola.
d) AQ is the line at infinity.
e) AC is the line at infinity.
f) AE is the line at infinity.

(
(
(
(
(
(

Figure 5.13

Follow the directions of Exercise 5.2 for the theorem below, which is
proved in Exercise 6.2.

Theorem
In the projective plane, let A, C, E, F be four points on a conic. Then the points
Q =tanANCE,R=ACNEF,andS = tan C n FA are collinear (Figure 5.14).

Figure 5.14
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5.4.

5.5.

5.6.

5.7.

Follow the directions of Exercise 5.2 for the theorem below, which is
proved in Exercise 6.3.

Theorem
In the projective plane, let A, C, E, F be four points on a conic. Then the points
Q =tanA ntanE, R = ACN EF, and S = CE n FA are collinear (Figure 5.15).

Figure 5.15

Use the theorem in Exercise 5.4 to prove the following result, and illustrate
this result with a figure:

Theorem
In the projective plane, let A, B, C, D be four points on a conic. Then the points
U=tanAntanB, V =tanCntan D, and W = AD n BC are collinear.

State the version of the theorem in Exercise 5.5 that holds in the Euclidean
plane in the following cases. Illustrate each result you state with a figure.
(a) A is the only point at infinity named.

(b) AU is the line at infinity.

(c) AB is the line at infinity.

(d) AC is the line at infinity.

(e) AD is the line at infinity.

Each part of this exercise gives two conics. Find their points of intersection
in the projective plane and the intersection multiplicities. Compare the re-
sult with Theorem 5.9. Draw a figure that shows the conics and their points
of intersection in the Euclidean plane.

(a) y=x*>-3,x*—y?’=1.

)

b) y=x>-3/4,x*—y>=1.

(c) y=x2+5x>+y?=1.

(d) y=x%y=x>+2.

(e) y=x*y=—x*+6.

(f) y=2%y=x"+2xy

(g y=+"x=y*

(h) y=»"y=(x-1)>~

(i) y=x2-1,4x2+y>=1.

() y=x*y*—x*=2
x? x?

(k) g Y gty
XZ XZ yl

W g-y=L-g+ =1
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5.8.

5.9.

5.10.

511.

5.12.
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(m) ¥ +y>=1,x>-2x+y>=0.
(n) ¥*+y>=1,x*>—-6x+y?>=-8.
(0) ¥*+y*=1,x+y* =4

Five points A-E, no three of which are collinear, are given in each part of

this exercise. Find the equations T=0, U =0, V =0, W = 0 of the lines

AB, CD, AC, BD, respectively. Then find the real number r such that the

curve ¥TU + VW = 0 contains E. Finally, write the equation ¥TU + VW = 0

in the form of (2). As the proof of Theorem 5.10 shows, this is the equation

of the unique conic through the five points A-E.

(a) A=(0,1), B=(0,-1), C=(1,2), D =(1,-2), E=(—2,0).

(b) A is the point at infinity on lines of slope 2, B=(0,0), C=(1,0),
D=(0,1), E=(1,1).

(c) A=(1,0), B=(—1,0), C=(2,1), D=(-2,1), E is the point at infinity
on vertical lines.

(d) A=1(0,0), B=(2,2), C=(1,-1), D is the point at infinity on vertical
lines, E is the point at infinity on horizontal lines.

() A=(1,0), B=(-1,0),C=(0,1),D=(0,-1), E=(2,2).

(f) A =(3,0), B=1(0,3),C=(=3,0), D=(0,-3), E=(1,1).

(g) A=(0,0), B=(1,0),C=(0,1),D=(-1,-1), E=(1,-1).

In each part of Exercise 5.8, draw the points A-E that lie in the Euclidean
plane, and sketch the conic determined by A-E.

Prove that five points in the projective plane lie on a unique curve of
degree 2 if and only if no four of the points are collinear.

Consider the following result:

Theorem

Let A, B, C, D be four points, no three of which are collinear. Let T =0, U = 0,
V =0, W =0 be the lines AB, CD, AC, BD, respectively. Then the curves of
degree 2 containing A-D are TU = 0 and yTU + VW = 0 for all real numbers
r, and every point except A-D lies on exactly one of these curves.

(a) Deduce the theorem from Theorems 5.1 and 5.10.

(b) Let A=(1,1), B=(1,-1), C=(-1,1), D= (—1,—1). Use the theorem
to write the curves of degree 2 containing A-D in the form of (2).
Which of these curves are not conics? Justify your answers.

(c) Mlustrate the theorem by drawing the gamut of curves in (b) in a single
figure, making it clear that each point in the Euclidean plane lies on
exactly one of these curves.

Consider the following result:

Theorem

Let A-D be four points, no three of which are collinear, in the projective plane.
Let a be a line through A that does not contain any of the points B-D. Then
there is a unique conic that contains A-D and is tangent to a.

Let T=0,U =0, V=0, W =0 be the equations of the lines a, CD, AC,
AD, respectively.
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5.13.

5.15.

5.16.

(a) For any nonzero number r, prove that yTU + VW =0 is a curve of
degree 2 that intersects T = 0 twice at A. Conclude that the curve is a
conic that contains A, C, D and is tangent to a. (See Theorems 5.1 and
5.2.)

(b) Prove that there is a nonzero number r such that the curve ¥TU + VW
contains B.

(c) Deduce the theorem from parts (a) and (b) and Theorems 4.11 and 5.9.

Let A be the point at infinity on vertical lines, let C = (1,0) and D = (—1,0),

and let a be the line at infinity. Let T, U, V, W be as in Exercise 5.12.

(a) Exercise 5.12 implies that the conics that contain A, C, D and are tan-
gent to a are exactly the curves ¥TU + VW = 0 for nonzero numbers r.
Write the equations of these conics in the form of (2).

(b) Draw a figure that shows the gamut of conics in (a) and the lines U, V,
W. Make it clear in the figure that each point in the Euclidean plane
except C and D lies on exactly one of the conics or lines, as Exercise
5.12 implies.

. Consider the following result:

Theorem

Let A, B, C be three noncollinear points in the projective plane. Let a be a line
on A that does not contain B or C, and let ¢ be a line on C that does not contain
A or B. Then there is a unique conic that contains A, B, C and is tangent to a
and c.

Let T=0, U=0, V=0 be the equations of the lines a, ¢, AC, respec-
tively.

(a) For any nonzero number v, prove that ¥TU + V2 = 0 is a curve of de-
gree 2 that intersects T = 0 twice at A and U = 0 twice at C. Conclude
from Theorems 5.1 and 5.2 that ¥TU + V2 = 0 is a conic that is tangent
to a at A and tangent to ¢ at C.

(b) Prove that there is a nonzero number r such that ¥TU + V? = 0 con-
tains B.

(c) Deduce the theorem from parts (a) and (b) and Theorems 4.11 and 5.9.

Let A =(1,0) and C = (—1,0), and let a and ¢ be the vertical lines through

A and C. Let T, U, V be as in Exercise 5.14.

(a) Exercise 5.14 implies that the conics that contain A and C and are
tangent to a and c are exactly the curves rTU + V? = 0 for nonzero
numbers r. Write the equations of these conics in the form of (2).

(b) Draw a figure that shows the gamut of conics in (a) and the lines a, c,
and AC. Make it clear that each point except A and C lies on exactly
one of the conics or lines, as Exercise 5.14 implies.

In the projective plane, let A, B, C be three points on a conic K, and let A’,
B’, C’ be three points on a conic K'. Prove that there is a transformation
that maps K to K’ and A, B, C to A', B, C’, respectively.

(Hint: One possible approach is to set D=tanAntanB and D’ =
tan A’ ntan B’ and deduce that there is a transformation mapping A, B, C, D
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to A, B, C', D'. Why do Theorems 4.11 and 5.9 imply that the transforma-
tion maps K to K'?)

5.17. Prove that no three tangents to a conic are concurrent, by using Exercise
5.16 to reduce to the case of tangents at three particular points of a partic-
ular conic. (The discussion after Theorem 7.5 provides another proof of
this result.)

5.18. By using the quadratic formula to find the number of points at infinity on
the curve in (1), derive conditions on the coefficients a-f that determine
whether (2) gives an ellipse, parabola, or hyperbola.

5.19. Let K be a nondegenerate curve of degree 2 in the Euclidean plane. This
exercise reviews the proof of the assertion after (2) that K is an ellipse,
parabola, or hyperbola. Use the equations in (15) to show that K can be
rotated so that it is given by (2) with b = 0. Deduce by completing squares
that K can be translated and rotated so that it is given by (12), (13), or (14)
for positive numbers a and b.

5.20. Let K be a curve of degree 2 that consists of a single point P, and let F be
any curve nonsingular at P. Prove that Ip(K, F) = 2 by using Theorem 5.1
and (15) to reduce to the case where K is 2 4+ y? = 0 and F is tangent to
the y-axis at the origin and by using the proof of Theorem 4.11 to write
the restriction of F to the Euclidean plane as in (14) of Section 4. (We use
this exercise in Exercises 10.8, 14.12, 14.14, and 14.15.)

§6. Pascal’s Theorem

This section is devoted to Pascal’s Theorem and its variants. Pascal’s
Theorem states that the three pairs of opposite sides of a hexagon in-
scribed in a conic intersect in three collinear points. We vary the theo-
rem in two ways. First, we replace sides of the hexagon with tangents
to the conic. Second, we inscribe the hexagon in two lines instead of a
conic, which gives Pappus’ Theorem 2.3.

The following result is the key to proving Pascal’'s Theorem. If a conic
K intersects each of two curves G and H of degree n in the same 2n
points, counting multiplicities, we prove that there is a curve W of de-
gree n — 2 such that the intersections of G and H are the intersections
of either curve with K together with its intersections with W. As indi-
cated after Theorem 3.6, we say that G = 0 and H = 0 are distinct curves
when G and H are homogeneous polynomials that are not scalar multi-
ples of each other.

Theorem 6.1
Let G =0 and H = 0 be distinct curves of degree n. Assume that there is a
conic K = 0 such that Ip(G,K) = Ip(H, K) for every point P in the projective
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plane and such that K intersects G or H a total of 2n times, counting multi-
plicities. Then there is a curve W = 0 of degree n — 2 such that

IP<G> H) = IP(G: K> + IP<G> W) = IP<H: K) + IP<H: W)
for every point P in the projective plane.

Proof
We can transform K = 0 into the parabola yz = x* (as discussed before
Theorem 5.9), and transformations preserve intersection multiplicities
and degrees of homogeneous polynomials (by Property 3.5 and the dis-
cussion after the proof of Theorem 3.4). Thus, we can assume that K is
yz — x%. Since yz = x* intersects G = 0 and H = 0 2n times, yz — x* is not
a factor of G or H (by Theorem 3.6(iii) or (vi)).

Let g(x,y) = G(x,y,1) and h(x,y) = H(x,y, 1) be the restrictions of G
and H to the Euclidean plane. Theorem 5.8 shows that

g(X,XZ) :T(X—al)sl ---(X—av)sv (1)

for a real number r # 0, because the assumption that K intersects G a
total of 2n times, counting multiplicities, implies that the polynomial
r(x) in Theorem 5.8 has degree 0 and is thus a constant . Each exponent
si is the number of times that K and G intersect at the point (a;,a?), and
these are the only points of the Euclidean plane where K and G intersect,
by Theorem 4.3.

Because H intersects K the same number of times at every point as G
does, Theorem 4.3 implies that

h(x,x*) =tx —a)% - (x — a,)®

for a real number t # 0. As discussed after Theorem 3.6, we can multiply
H, and hence h, by —r/t, which gives

hx,x%) = =r(x —a)" - (x — ay)*.
Adding this equation to (1) shows that
(%, %) + h(x,x*) = 0.

Then y — x? is a factor of g(x,y) + h(x,y) (by Theorem 1.9(ii)), and we
can write

g(xy) + hixy) = (y — X wx,y) (2)

for a polynomial w(x,y).

Because G = 0 and H = 0 are distinct curves, G and H are not scalar
multiples of each other, and so G+ H is nonzero. Thus, since G and
H are homogeneous polynomials of degree n, so is G + H. Multiplying
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every term of each polynomial in (2) by an appropriate power of z shows
that

G<X>y: Z) +H(X>yzz) = (yZ - X2>W<X>yaz> (3>

for a homogenous polynomial W(x, y, z) of degree n — 2. For any point P
of the projective plane, it follows that

Ip(G,H) = Ip(G,G + H) (by Theorem 3.6(iv))
= Ip(G,KW) (by (3))
=Ip(G,K) + Ip(G, W) (by Theorem 3.6(v)).
Interchanging G and H in the last sentence shows that
Ip(H,G) = Ip(H,K) + Ip(H, W),

and the left-hand side equals Ip(G, H) (by Theorem 3.6(ii)). O

A conic intersects a curve of degree n that does not contain it at most
2n times, counting multiplicities, by Theorem 5.9. Thus, the hypotheses
of Theorem 6.1 state that G and H are curves of the same degree n that
intersect the conic K as many times as possible without containing it
and that have the same intersections with K, taking into account multi-
plicities. The conclusion of Theorem 6.1 shows that, if we list the points
where G and H intersect and remove the points where either curve
intersects K, then we are left with the points where either curve inter-
sects a curve W of degree n — 2, provided that we repeat each point of
intersection as many times as its multiplicity. We think of Theorem 6.1
as “peeling off a conic” from the intersection of two curves of the same
degree.

We can now prove the main result of this section, Pascal’s Theorem.

Theorem 6.2 (Pascal’s Theorem)
Let A-F be six points on a conic K in the projective plane. Then the points
Q = ABNDE,R=BCnEF, and S = CD n FA are collinear (Figure 6.1).

Proof
LetL=0,M=0,N=0,T=0,U =0, V=0 be the lines

AB, CD, EF, BC, DE, FA, (4)
respectively. Set
G=LMN and H=TUV. (5)

G and H are homogeneous polynomials of degree 3, since they are each
the product of three homogeneous polynomials of degree 1. The curve
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G = 0 consists of the three lines AB, CD, EF, and the curve H = 0 con-
sists of the three lines BC, DE, FA. We prove the theorem by peeling off
the conic K from the intersection of G and H.

Theorem 5.2 implies that K intersects line AB once at A and once at
B, line CD once at C and once at D, and line EF once at E and once at
F. Thus K intersects G once at each of the six points A-F (by (5) and
Theorem 3.6(v)). Likewise, Theorem 5.2 implies that K intersects line
BC once at B and once at C, line DE once at D and once at E, and line
FA once at F' and once at A. Thus K also intersects H once at each of
the points A-F (by (5) and Theorem 3.6(v)). In short, the hypotheses of
Theorem 6.1 hold with n = 3: G and H are curves of degree 3 that inter-
sect the conic K in the same 6 = 2 - 3 points A-F.

No three of the points A-F on K are collinear (by Theorem 5.2). Thus,
the six lines in (4) are distinct, and any two intersect exactly once, count-
ing multiplicities (by Theorem 4.1). If we intersect each of the three
lines AB, CD, EF forming G with each of the three lines BC, DE, FA
forming H, we obtain the nine points ABNBC =B, ABNDE=Q,
ABAFA=A, CDNBC=C, CDNDE=D, CDNFA =S, EFNBC =R,
EFNDE=E, and EF"FA = F. Thus, G and H intersect at the nine
points A-F, Q,R, S (by (5) and Theorem 3.6(v)).

If we remove the six points A-F where G and H intersect K from the
nine points A-F, Q, R, S where G and H intersect each other, we are left
with the three points Q, R, S. We can apply Theorem 6.1 (by the second
paragraph of the proof), and we deduce that Q, R, S are the points where
G and H intersect a curve of degree 3 — 2 = 1. This curve is a line that
contains Q, R, S (by Theorem 3.6(iii)), as desired. O

Five points A-E, no three of which are collinear, lie on a unique
conic K (by Theorem 5.10). Pascal’'s Theorem implies that we can use a
straightedge and the five given points A-E to construct any number of
points of K. In fact, let [ be any line through A other than tan A, AB,
AC, AD, AE (Figure 6.2). K intersects [ in a point F other than A (by The-
orem 5.2). By Pascal’s Theorem, we can use a straightedge to construct F
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A
F B
E C
D
Figure 6.3

as follows: we construct Q = ABNDE, S=I1nCD, R=QSnBC, and
F = ER nI. These points exist by Theorems 2.1, 2.2, and 5.2.

If A-F are six points such that the lines in (4) are distinct, we think of
hexagon ABCDEF as the figure formed by the six points A-F and the six
lines in (4) (Figure 6.3). We call the points A-F' the vertices of the hexa-
gon, and we call the six lines in (4) the sides of the hexagon. As Figure 6.3
suggests, we call AB and DE, BC and EF, and CD and FA the three pairs
of opposite sides of the hexagon. These are the three pairs of lines that in-
tersect in the points Q, R, S in Pascal’s Theorem 6.2 (Figure 6.1). Accord-
ingly, we can restate Pascal’s Theorem as follows: If a hexagon is inscribed
in a conic, the three pairs of opposite sides intersect in collinear points. The
curves G and H in (5) used to prove Pascal’s Theorem are the two triples
of lines AB, CD, EF and BC, DE, FA formed by taking every other side of
hexagon ABCDEF (Figure 6.3).

Let A-F be six points on a conic. If we arrange the points in different
orders to form hexagons, we obtain different lines through the three
intersections of opposite sides of each hexagon. For instance, hexagon
ABCDEF shows that the points Q, R, S in Figure 6.1 are collinear, and
hexagon ADCFBE shows that the points T'=ADNFB, U = DC N BE,
and V = CF n EA are collinear (Figure 6.4).

If the point B in Pascal’s Theorem moves around the conic K until it
approaches the point A, the lines AB and BC approach tan A and AC.
Thus, the conclusion of Pascal’s Theorem that the points Q = AB N DE,
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Figure 6.4

R =BCANEF, and S = CD n FA are collinear suggests that the points
Q =tan AN DE, R=ACNEF, §=CDnFA (6)

are collinear for any five points A, C, D, E, F on a conic (Figure 6.5).

If the point D moves around the conic to approach C, the lines DE and
CD in (6) approach CE and tan C. Thus, the collinearity of the points in
(6) suggests that the points

Q =tanA n CE, R=ACNEF, S=tanCnNFA (7)

are collinear for any four points A, C, E, F' on a conic (Figure 6.6).

If the point F' moves around the conic to approach E, the lines EF' and
FA in (7) approach tan E and EA. Thus, the collinearity of the points in
(7) suggests that the points

Q =tanA N CE, R=ACntanE, S=tanCNEA (8)

are collinear for any three points A, C, E on a conic (Figure 6.7).
Pascal’s Theorem refers to a hexagon inscribed in a conic. In the three
preceding paragraphs, we have replaced the hexagon with an n-gon
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Figure 6.7

inscribed in a conic and the tangents at 6 — n of its vertices. In (6), we
considered an inscribed pentagon and the tangent at one of its vertices.
In (7), we considered an inscribed quadrilateral and the tangents at two
of its vertices. In (8), we considered an inscribed triangle and the tan-
gents at its three vertices.

As a point Y on a conic K approaches a point X on K, the line XY ap-
proaches tan X. Accordingly, we think of “line XX” as the tangent at X.
We can then think of the points in (6)-(8) as the intersections of opposite
sides of “hexagon ABCDEF” when consecutive vertices are equal. For ex-
ample, if we set B= A, D= C, and F = E, hexagon ABCDEF becomes
“hexagon AACCEE" (Figure 6.8). Opposite sides of this hexagon intersect
in the points

Q=AANCE, R=ACNEE, S=CCNEA (9)

listed in (8).

Intersection multiplicities make it possible to prove these variations
in essentially the same way as Pascal’s Theorem. To illustrate this, we
prove that the points in (8)—or, equivalently, (9)—are collinear. We
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A
E A
E C
C
Figure 6.8

proved Pascal’s Theorem by considering the sides
AB, CD, EF, BC, DE, FA

of hexagon ABCDEF, as listed in (4). Replacing B with A, D with C, and F
with E, we now consider the sides

tanA, tanC, tanE, AC, CE, EA
of “hexagon AACCEE.”

Theorem 6.3

Let A, C, E be three points on a conic K in the projective plane. Then the
points Q =tan A NCE, R=tanEn AC, and S = tanC n EA are collinear
(Figure 6.7).

Proof
LetL=0,M=0,N=0,T=0,U =0, V=0 be the lines

tanA, tanC, tanE, AC, CE, EA, (10)
respectively. Set
G=LMN and H=TUYV. (11)

G and H are homogeneous polynomials of degree 3, since they are each
the product of three homogeneous polynomials of degree 1. The curves
G = 0 and H = 0 consist of alternate sides of “hexagon AACCEE” (Figure
6.8): G consists of the three lines tan A, tan C, tan E, and H consists of the
three lines AC, CE, EA.

Theorem 5.2 implies that the conic K intersects tan A twice at A, tanC
twice at C, and tan E twice at E. Thus, K intersects G twice at each of the
points A, C, E (by (11) and Theorem 3.6(v)). Theorem 5.2 also implies
that K intersects line AC once at A and once at C, line CE once at C
and once at E, and line EA once at E and once at A. Thus, K intersects
H twice at each of the points A, C, E (by (11) and Theorem 3.6(v)). In
short, the hypotheses of Theorem 6.1 hold with n =3: G and H are
curves of degree 3 that intersect the conic K the same 6 = 2 - 3 times—
twice at A, twice at C, and twice at E.
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Theorem 5.2 shows that no three points of K are collinear and that
the tangent at any point X of K intersects K only at X. Thus, the six
lines in (10) are distinct, and any two of them intersect exactly once,
counting multiplicities (by Theorem 4.1). Accordingly, if we intersect
each of the three lines tan A, tan C, tan E forming G with each of the
three lines AC, CE, EA forming H, we obtain the points tanA N AC =
A, tanAnNnCE=Q, tanANnEA=A, tanCnAC=C, tanCn CE = C,
tanCNEA =S, tanENAC=R, tanENCE=E, and tanENEA =E.
Thus, G and H intersect nine times: twice at each of the points A, C, E,
and once at each of the points Q, R, S (by (11) and Theorem 3.6(v)).

If we remove the intersections of G or H with K from the intersections
of G and H, taking into account multiplicities, we are left with the points
Q, R, S. We can apply Theorem 6.1 (by the second paragraph of the
proof), and we deduce that Q, R, S are the points where G or H intersect
a curve of degree 3 — 2 = 1. This curve is a line containing Q, R, S (by
Theorem 3.6(iii)). O

We can also think of Pappus’ Theorem 2.3 as a variation of Pascal’s
Theorem (Figure 6.9). In Pappus’ Theorem, hexagon AB'CA'BC’ is in-
scribed in two lines e and f in the following sense: alternate vertices
A, C, B of the hexagon are points of ¢ other than e N f, and the remaining
alternate vertices B’, A, C’ are points of f other than ¢ N f (Figure 6.10).
The three pairs of opposite sides of hexagon AB'CA'BC’ intersect in three

eNf

Figure 6.10
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points AB'nA'B=Q, BCnBC' =R, and CA' nC'A = S, and the conclu-
sion of Pappus’ Theorem is that these points are collinear. Accordingly,
we can restate Pappus’ Theorem as follows: If a hexagon is inscribed in
two lines, the three pairs of opposite sides intersect in collinear points. In
short, the conic in which a hexagon is inscribed in Pascal’s Theorem is
replaced in Pappus’ Theorem with two lines, a degenerate conic.

The proof of Pascal’s Theorem 6.2 was based on Theorem 6.1, which
lets us “peel off a conic” from the intersection of two curves of the same
degree. The conic is replaced with two lines in Pappus’ Theorem. The
following analogue of Theorem 6.1 lets us “peel off a line”” from the inter-
section of two curves of the same degree:

Theorem 6.4

Let G =0 and H = 0 be distinct curves of degree n. Assume that there is a
line L =0 such that Ip(G, L) = Ip(H, L) for every point P in the projective
plane and such that L intersects G or H a total of n times, counting multi-
plicities. Then there is a curve W of degree n — 1 such that

Ip(G,H) = Ip(G,L) + Ip(G, W) = Ip(H, L) + Ip(H, W)
for every point P in the projective plane.

Proof
There is a transformation that maps two points of the line L = 0 to two
points of the line y = 0 (by Theorem 3.4), and transformations preserve
intersection multiplicities and degrees of homogeneous polynomials
(by Property 3.5 and the discussion after the proof of Theorem 3.4).
Thus, we can assume that L = 0 is the line y = 0. Because y = 0 inter-
sects G =0 and H = 0 2n times, y is not a factor of G or H (by Theorem
3.6(iii) or (vi)).

Let g(x,y) = G(x,y,1) and h(x,y) = H(x,y, 1) be the restrictions of G
and H to the Euclidean plane. Theorem 4.4 shows that

gx,0) =r(x —a))” - (x — ay)™ (12)

for a real number r # 0, because the assumption that y = 0 intersects
G =0 a total of n times, counting multiplicities, implies that the poly-
nomial 7(x) in Theorem 4.4 has degree 0 and is thus a constant . Each
exponent s; is the number of times that y = 0 and G = 0 intersect at the
point (a;, 0), and these are the only points of the Euclidean plane where
y = 0 and G = 0 intersect (by Theorem 4.3).

Because y = 0 intersects G = 0 and H = 0 the same number of times
at every point, Theorem 4.3 implies that

h(x,0) =tx —a)™ -+ (x — a,)™

for a real number t # 0. As discussed after Theorem 3.6, we can multiply
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H, and hence h, by —r/t, which gives
h(x,0) = —r(x —a)® - (x — ap)™.
Adding this equation to (12) shows that
g(x,0) + h(x,0) = 0.

Then y is a factor of g(x,y) + h(x,y) (by Theorem 1.9(ii)), and we can
write

gxy) + hixy) = yw(x,y) (13)

for a polynomial w(x,y).

Because G = 0 and H = 0 are distinct curves, G and H are not scalar
multiples of each other, and so G+ H is nonzero. Thus, since G and
H are homogeneous polynomials of degree n, so is G + H. Multiplying
every term of each polynomial in (13) by an appropriate power of z
shows that

G(x,y,z) + H(x,y,2z) =yW(x,y, 2) (14)

for a homogeneous polynomial W(x, y, z) of degree n — 1. For any point P
in the projective plane, it follows that

Ip(G,H) = Ip(G,G+ H) (by Theorem 3.6(iv))
=Ip(G,yW) (by (14))
=Ip(G,y) + Ip(G,W) (by Theorem 3.6(v)).
Interchanging G and H shows that
Ip(H, G) = Ip(H,y) + Ip(H, W),
and the left-hand side equals Ip(G, H) (by Theorem 3.6(ii)). O

A line intersects a curve of degree n that does not contain it at most n
times, counting multiplicities (by Theorem 4.5). Thus, the hypotheses of
Theorem 6.4 state that G and H are curves that have the same degree n,
intersect the line L as many times as possible without containing it, and
intersect L in the same points, counting multiplicities. The conclusion
of Theorem 6.4 is that, if we list the points where G and H intersect and
remove the points where either curve intersects L, then we are left with
the points where G or H intersects a curve W of degree n — 1, provided
that we take into account the multiplicities of intersections. We think of
Theorem 6.4 as “peeling off a line” from the intersection of two curves of
the same degree.

We use this result in Section 9 to prove the associative law for multi-
plication of points on a cubic. We use it now to prove Pappus’ Theorem
2.3 in a manner analogous to Pascal’s Theorem. If a hexagon is inscribed
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Figure 6.11

in two lines e and f, we peel off ¢ and f from the intersection of the two
cubics formed by the three pairs of opposite sides of the hexagon. It fol-
lows that the three pairs of opposite sides of the hexagon intersect in
three collinear points.

Theorem 6.5 (Pappus’ Theorem)

Let e and f be two lines in the projective plane. Let A, B, C be three points of e
other than e f, and let A', B', C' be three points of f other than e ~ f. Then
the points Q = AB'n"A'B, R=BC' nB'C, and S = CA' nC'A are collinear
(Figure 6.11).

Proof
LetL=0,M=0,N=0,T=0,U =0, V=0 Dbe the lines

AB', CA', BC', B'C, A'B, CA, (15)

respectively. Set
G=LMN and H = TUV. (16)

G and H are homogeneous polynomials of degree 3, since they are each
the product of three homogeneous polynomials of degree 1. The curves
G = 0 and H = 0 consist of alternate sides of hexagon AB'CA’BC’ (Figure
6.10): G consists of the three lines AB’, CA’, BC', and H consists of the
three lines B'C, A'B, C'A.

Since none of the points A’, B', C’ equals e n f, Theorem 4.1 implies
that e intersects line AB’ once at A, line CA’ once at C, and line BC’
once at B. Thus, ¢ intersects G once at each of the points A, B, C (by
(16) and Theorem 3.6(v)). Likewise, ¢ intersects line B'C once at C, A'B
once at B, and C’A once at A, and so e intersects H once at each of the
points A, B, C (by (16) and Theorem 3.6(v)). In short, the hypotheses of
Theorem 6.4 hold with n = 3: G and H are curves of degree 3 that inter-
sect e in the same three points A, B, C.

The six lines in (15) are distinct because each one is determined by
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the points where it intersects ¢ and f (by Theorems 2.1 and 2.2). Thus,
any two of the lines in (15) intersect exactly once, counting multiplicities
(by Theorem 4.1). If we intersect each of the three lines AB’, CA’, BC’
forming G with each of the three lines B'C, A'B, C'A forming H, we
obtain the points AB'nB'C=B', ABBnAB=Q, ABBnC'A=A, CAn
B'C=C, CAnAB=A", CAnC'A=S8, BC'nB'C=R, BC'nA'B=B,
and BC' nC'A = C'. Thus, G and H intersect at the nine points

A,B,C,AB',C',Q,R,S (17)

(by (16) and Theorem 3.6(V)).

If we remove the three points A, B, C where G and H intersect e from
the nine points in (17) where G and H intersect, we are left with the six
points

A, B',C',Q,R,S. (18)

We can apply Theorem 6.4 (by the second paragraph of the proof) and
deduce that there is a curve W of degree 3 — 1 = 2 that intersects both G
and H at the six points in (18).

In particular, W contains the six points in (18) (by Theorem 3.6(iii)).
Since f also contains A’, B/, C', it intersects W at least once at each of
these three points (by Theorem 3.6(iii)). Then f intersects the curve W
of degree 2 at least three times. Thus, if F'= 0 is the equation of f in
homogeneous coordinates, F is a factor of W (by Theorem 4.5). We write
W = FD, where D is a homogeneous polynomial of degree 1, and so
D =0is aline.

The lines AB’ and A'B intersect f at distinct points A’ and B’ (by
Theorem 2.1), and so their intersection Q = AB’ n A'B does not lie on f.
Likewise, neither R nor S lies on f. On the other hand, the six points in
(17) lie on W = FD = 0, and so they each lie on either F =0 or D = 0.
Since Q, R, S do not lie on f, they lie on the line D = 0 and are therefore
collinear. O

Exercises

6.1. Prove the theorem in Exercise 5.2 by adapting the proof of Pascal’s
Theorem 6.2. (This shows that the points in (6) are collinear. These points
are the intersections of the three pairs of opposite sides of “hexagon”
AACDEF.)

6.2. Prove the theorem in Exercise 5.3 by adapting the proof of Pascal’s Theo-
rem 6.2. (This shows that the points in (7) are collinear. These points are
the intersections of the three pairs of opposite sides of “hexagon” AACCEF.)
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6.3.

6.4.

6.5.

6.6.

6.7.

6.8.

6.9.

Prove the theorem in Exercise 5.4 by adapting the proof of Pascal’s Theo-
rem 6.2. (This shows that the three pairs of opposite sides of “hexagon”
AACEEF intersect in collinear points. This result, like the theorem in
Exercise 5.3, concerns a quadrilateral inscribed in a conic and the tangents
at two of the vertices. The tangents are opposite sides of the “hexagon” in
Exercise 5.4 but not in Exercise 5.3.)

Let A, C, D, E, F be five points on a conic. Describe how to use a straight-
edge to construct the tangent at A by applying the theorem in Exercise 5.2.

Let four points A, C, E, F on a conic and the tangent at A be given.

(a) Use the theorem in Exercise 5.4 to describe how to construct the tan-
gent at E with a straightedge.

(b) Iflis aline through E other than AE, CE, EF, tan E, use the theorem in
Exercise 5.2 to describe how to use a straightedge to construct the point
other than E where [ intersects the conic.

Let three points A, C, E on a conic and the tangents at A and C be given.

(a) Use Theorem 6.3 to describe how to construct the tangent at E with a
straightedge.

(b) Iflis any line through A other than AC, AE, tan A, use the theorem in
Exercise 5.3 to describe how to use a straightedge to construct the point
other than A where [ intersects the conic.

Consider the following converse of Pascal’'s Theorem 6.2:

Theorem

Let A-F be six points, no three of which are collinear, in the projective plane. If
the points Q = ABN DE, R= BCnNEF, and S = CD N FA are collinear, then
the six points A-F liec on a conic (Figure 6.1).

Prove this theorem by using Theorem 6.4, taking L to be the line
through Q, R, S, and taking G and H as in (5).

Consider the following converse of Theorem 6.3:

Theorem

Let A, C, E be three noncollinear points in the projective plane. Let a be a
line through A other than AC and EA, let ¢ be a line through C other than AC
and CE, and let e be a line through E other than EA and CE. If the points
Q=anCE, R=enAC, and S = cn EA are collinear, then there is a conic
that is tangent to a at A, tangent to ¢ at C, and tangent to e at E (Figure 6.7).

Prove this theorem by using Theorem 6.4, taking L to be the line
through Q, R, S.

Use Theorem 6.4 to prove the following converse of the theorem in
Exercise 5.2:

Theorem
Let A, C, D, E, F be five points, no three of which are collinear, in the projective
plane. Let a be a line through A other than AC, AD, AE, AF. If the points
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Q =anDE, R=ACnEF, and S=CDNFA are collinear, then the points

A’

C, D, E, F lie on a conic tangent to a.

6.10. The following theorems arise from Pascal’s Theorem 6.2 by replacing the
lines AB and CD with a second conic K. Prove these theorems by adapting
the proof of Theorem 6.2.

(a) Theorem. Let K and K' be two conics through four points A-D in the

projective plane. Let E and F be two points of K that do not lie on K' and
are such that E does not lie on the tangent to K' at D and F does not lie on
the tangent to K" at A. Then DE intersects K’ at a point Q other than D, FA
intersects K' at a point S other than A, and EF intersects BC at a point R
collinear with Q and S (Figure 6.12).

Figure 6.12

(b) Theorem. Let K and K’ be two conics through four points A-D in the pro-

Jjective plane. Let E be a point of K that does not equal B or C or lie on the
tangents to K’ at A and D. Then the tangent to K’ at A intersects K at a
point F other than A, DE intersects K' at a point Q other than D, and EF
intersects BC at a point R collinear with Q and A (Figure 6.13).

Figure 6.13

Theorem. Let K and K' be two conics through four points A-D in the pro-
jective plane. Assume that the tangents to K' at A and D do not intersect at
a point of K. Then the tangent to K' at D intersects K at a point E other
than D, the tangent to K' at A intersects K at a point F other than A, and
EF intersects BC at a point R collinear with A and D (Figure 6.14).
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6.11.

6.12.

6.13.

Figure 6.14

The following result arises by replacing the lines tanA and tanC in
Theorem 6.3 with a conic K’. Illustrate the result with a figure, and prove
it by adapting the proof of Theorem 6.3.

Theorem

Let A and C be two points in the projective plane, let | be a line on A, and let m
be a line on C. Let K and K' be two conics that are both tangent to 1 at A and
tangent to m at C. Let E be a point on K other than A and C. Then line CE
intersects K’ at a point Q other than C, the tangent to K at E intersects line
AC at a point R, line EA intersects K' at a point S other than A, and the points
Q, R, S are collinear.

The following result arises by replacing the lines AC and CE in Theorem
6.3 with a conic K’. Hlustrate the result with a figure, and prove it by
adapting the proof of Theorem 6.3.

Theorem

Let K and K’ be two conics that both contain three points A, C, E in the projec-
tive plane and are tangent to the same line at C. Assume that the tangents to K
at A and E do not intersect at a point of K'. Let S be the point where the common
tangent to K and K' at C intersects line AE. Then the tangent to K at A inter-
sects K' at a point Q other than A, the tangent to K at E intersects K' at a point
R other than E, and the points Q, R, S are collinear.

(a) Prove the following result:

Theorem

Let A-H be eight points on a conic in the projective plane. Then the points
P=ABNDE, Q=BCAEF, R=CDNFG, S=DEnGH, T =EF N HA,
U=FGnNAB, V=GHnNBC, and W = HA n CD lie either on a conic or on
two lines.

(This theorem arises by replacing the hexagon ABCDEF in Pascal’s
Theorem with the octagon ABCDEFGH in Figure 6.15. We intersect each
side of the octagon with the two sides adjacent to the opposite side; for
example, we intersect AB with the two sides DE and FG adjacent to the
side EF opposite AB.)
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6.14.

6.15.

6.16.

6.17.
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Figure 6.15

(b) TMustrate the theorem when P-W lie on a conic.
(c) Illustrate the theorem when P-W lie on two lines.

(Hint: One possible approach is to choose points A-C and E-G on the
conic and then choose D and H on the conic so that S = DE n GH is collin-
ear with Q = BCn EF and U = FG n AB. Since no three points on a conic
are collinear, P-W must lie on two lines.)

(a) Prove the following result, which arises from Pappus’ Theorem in
the same way as the theorem in Exercise 6.13 arises from Pascal’s
Theorem:

Theorem

Let e and f be two lines in the projective plane. Let A, C, E, G be four points
of e other than en f, and let B, D, F, H be four points of f other than e f.
Then the points P=ABNDE, Q=BCNEF, R=CDnNFG, S=DEnGH,
T=EFNnHA, U=FGnAB, V=GHnBC, and W = HA n CD lie either on
a conic or on two lines.

(b) Tlustrate the theorem when P-W lie on a conic.
(c) Mlustrate the theorem when P-W lie on two lines. (See the hint to
Exercise 6.13(c).)

Use Desargues’ Theorem (Exercise 3.20) and Exercise 5.17 to deduce
Theorem 5.3 from Theorem 6.3.

State the version of the theorem in Exercise 4.21 that holds in the following
cases when n = 2 and f is a conic K. Illustrate each version with a figure.
(These results are known as Carnot’s Theorem.)

(a) K is not tangent to any of the lines ST, TU, or US.

(b) K is tangent to line ST but not to TU or US.

(c) K istangent to lines ST and TU but not US.

(d) K is tangent to all of the lines ST, TU, and US.

Define harmonic conjugates as in Exercise 4.25. Let E, F, G, H be four
points, no three of which are collinear, in the projective plane. Let [ be a
line that does not contain any of the points E, F, G, H, EF n GH. Assume
that there is a curve of degree 2 that contains E-H and intersects [ twice at
a point P. Prove that the harmonic conjugate of P with respect to EF n 1l and
GH n1is the unique point other than P at which [ intersects twice a curve
of degree 2 containing E-H.
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6.18.

6.19.

6.20.

6.21.

6.22.

(This is a version of Desargues’ Involution Theorem. One possible ap-
proach is to apply Exercises 4.21 and 4.27 after using Theorem 3.4 to
ensure that no relevant points lie at infinity.)

Let E, F, G, H be four points, no three of which are collinear, in the projec-
tive plane. Let I be a line that does not contain any of these points. Prove
that there are either zero or exactly two points at which [ intersects twice a
curve of degree 2 containing E-H. (See Exercises 3.14, 4.29(a), and 6.17.)

Use Exercise 6.18 and Theorem 5.1 to prove the following result:

Theorem
Let E, F, G, H be four points, no three of which are collinear, in the projective
plane. Let 1 be a line that does not contain any of these points.

(i) If 1 contains none of the points

EF nGH, EGNFH, EHANFG, (19)

then either zero or two conics contain E-H and are tangent to 1.

(ii) If 1 contains exactly one of the points in (19), then there is exactly one conic
that contains E-H and is tangent to 1.

(iii) If 1 contains two of the points in (19), then no conic contains E-H and is
tangent to 1.

(Exercise 3.14 shows that [ cannot contain all three points in (19).)

Tllustrate the theorem in Exercise 6.19 by drawing four figures, one for
each of the two possibilities in (i), one for (ii), and one for (iii).

In the Euclidean plane, let K be a conic, P a point, L a line, and e a positive
number. K has the focus-directrix property with focus P, directrix L, and ec-
centricity e if K contains every point whose distance from P is e times its
distance from L. (Distance from L is measured perpendicular to L.)

(a) Ife>0,e# 1, and d # 0, prove that

(1 —e?)x* 4 y* = d%e*(1 — &%)

has the focus-directrix property with focus (de?, 0), directrix x = d, and
eccentricity e. (The focus has been chosen so that the equation has no x
or y terms.)

(b) Let K be the conic x*/a% + y?/v =1 for a > 0, v # 0, and a? > v. Con-
clude from (a) that K has the focus-directrix property with focus (c, 0),
directrix x = d, and eccentricity e for ¢ = +(a®* —v)'/?, ¢ =|c|/a, and
d=c/e>.

(c) If p # 0, prove that 4py = x? has the focus-directrix property with focus
(0, p), directrix y = —p, and eccentricity 1.

Let K be the conic x?/a®? 4+ y?/v =1 fora > 0, v # 0, and a? > v. K has foci

F=(c,0) and G = (—c, 0) for ¢ = (a® —v)'/?. Let Q = (r,s) be a point on K

with » and s nonzero. Define harmonic conjugates and harmonic sets as in

Exercise 4.25 and the paragraph before it.

(a) Let U be the point where the tangent at Q intersects the x-axis, and let
N be the point where the normal at Q intersects the x-axis. (The nor-
mal is the line through Q perpendicular to the tangent at Q.) Use im-
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plicit differentiation to find the slope of the tangent at Q, and conclude
that U and N have x-coordinates a?/r and c?r/a’. Deduce from Exer-
cises 4.19 and 4.27(b) that U and N are harmonic conjugates with re-
spect to F and G.

(b) Let M be the line through G parallel to the tangent at Q. Let M intersect
QF at a point B and QN at a point D, and set W = DF n GQ. Deduce
from (a) and Exercise 4.25 that B, U, and W are collinear. Conclude
from this and Exercise 4.25 that the ideal point on M has harmonic con-
jugate D with respect to G and B.

(c) Combine (b) with Exercise 4.26 and basic Euclidean geometry to prove
the reflection property of ellipses and hyperbolas: the tangent and normal
at Q bisect the angles formed by the lines QF and QG through Q and
the foci. Illustrate the property with two figures, one where K is an el-
lipse and one where K is a hyperbola. To what extent does the property
still hold when r or s is zero?

6.23. Let K be the parabola 4py = x? for p # 0. Let F be the focus (0, p). Let Q be
a point (r,s) on K with r # 0. Use basic calculus to show that the tangent
at Q intersects the y-axis at a point T with y-coordinate —s. Deduce that F
is equidistant from T and Q. Combine this with basic Euclidean geometry
to prove the reflection property of parabolas: the tangent and normal at Q
bisect the angles formed by the line QF and the vertical line through Q. II-
lustrate the property with a figure. In what sense does the property hold
when v = 0? (The normal at Q is the line through Q perpendicular to the
tangent at Q.)

§7. Envelopes of Conics

The envelope of a conic is the set of tangent lines. We study envelopes in
this section, and our main tool is a map that interchanges the points and
lines of the projective plane. We prove that this map interchanges conics
and their envelopes, and so results about conics imply results about en-
velopes. We end the section by showing how to construct the envelope of
a conic by joining the points of a line with their images under a transfor-
mation.
Our study of envelopes is based on the map

(a,b,c) > ax+by+cz=0 (1)

that sends each point (a,b,c) of the projective plane to the line
ax + by 4+ cz = 0 whose coefficients are the homogeneous coordinates
of the point. The homogeneous coordinates a, b, ¢ of the point are not
all zero, and so ax+ by 4+ cz =0 is, in fact, a line. As t varies over all
nonzero numbers, (ta,tb,tc) varies over all triples of homogeneous
coordinates that represent one point; the corresponding equations
tax + thy + tcz = 0 all represent the same line, and so (1) gives a well-
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defined map of points to lines in the projective plane. There does not
seem to be a generally recognized name for the map in (1); we call it
the basic polarity.

What is the image of a line under the basic polarity? The line has
equation px + qy + vz = 0 for real numbers p, g, r that are not all zero.
A point (a, b, ¢) lies on this line if and only if the equation

pa+qb+rc=0 (2)

holds. The basic polarity maps the point (a,b,c) to the line
ax + by + cz = 0. Note that we can rewrite (2) as

ap +bq+cr=0, (3)

and this equation holds if and only if the line ax 4+ by + cz = 0 contains
the point (p, g, 7). Thus, the basic polarity matches up the points (a, b, c)
of the line px + gy + rz = 0 with the lines ax + by 4+ cz = 0 that contain
the point (p, g, 7). Accordingly, the basic polarity determines a map

px+qy+rz=0—(p,q,7) (4)

of lines to points in the sense that it matches up the points of the line
px + qy + rz = 0 with the lines through the point (p,q,7).

Note that the maps in (1) and (4) are inverses: a point maps to a line
in (1) if and only if the line maps to the point in (4). Thus, the basic
polarity interchanges points and lines in pairs. As we have seen, the
equivalence of (2) and (3) shows that the basic polarity preserves inci-
dence, the property of points lying on lines. In other words, if the basic
polarity interchanges a point P with a line m and interchanges a line [
with a point Q, then P lies on [ if and only if m contains Q.

Given a theorem about points and lines in the projective plane, the
dual is the statement obtained by applying the basic polarity to the points
and lines in the original theorem. As we have seen, this means that
we interchange points and lines while preserving incidence. The dual
of a theorem holds automatically, without further work; once we have
proved that a certain relationship holds among points and lines, apply-
ing the basic polarity gives another true statement.

For example, suppose that we start with Pappus’ Theorem 6.5.

Pappus’ Theorem

Let e and f be two lines in the projective plane. Let A, B, C be three points of e
other than en f, and let A', B', C' be three points of f other than e f. Then
the points Q = AB'nA'B, R = BC' nB'C, and S = CA' n C'A are collinear
(Figure 6.11).

If we apply the basic polarity to the points and lines in Pappus’
Theorem, we interchange points and lines while preserving incidence.
In particular, we interchange the terms “line XY” and “point x ny”: XY
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is the unique line through two points X and Y, and x ny is the unique
point on two lines x and y. Thus, dualizing Pappus’ Theorem gives the
following result. It requires no proof beyond the observation that it is
the dual of Pappus’ Theorem, which we have already proved.

Theorem 7.1

Let E and F be two points in the projective plane. Let a, b, ¢ be three lines on
E other than EF, and let a’, b’, ¢’ be three lines on F other than EF. Then the
lines g=(anb)(a nb), r=Dbnc) b nc), and s= (cnad')(c' na) are
concurrent (Figure 7.1). O

The basic polarity interchanges points and lines in pairs, as (1) and (4)
show. Thus, dual theorems occur in pairs; we obtain each theorem in
a pair by interchanging the points and lines of the other. For instance,
dualizing Theorem 7.1 gives Pappus’ Theorem.

We have seen that the basic polarity interchanges the points on a line
with the lines on a point. We claim that it interchanges the points on a
conic with the lines tangent to a conic. We start by considering the tan-

gent lines of a conic easy to study, the parabola y = x2.

Theorem 7.2
The basic polarity interchanges the lines tangent to the parabola yz = x*
with the points on the parabola 4yz = x*.

Proof
The intersection of the parabola yz = x? with the Euclidean plane has
equation y = x?, and it consists of the points (a, a?) for all real numbers
a. Calculus gives the formula dy/dx = 2x, and so the tangent to y = x? at
(a,a?) is the line

y—a*=2a(x—a).
We can rewrite this equation as —2ax + y + a? = 0, which becomes

—2ax+y+a’z=0 (5)
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in homogeneous coordinates (x,y, z). Taking p = —2a, g = 1, and r = a?
shows that the line in (5) has the form

px+qy+rz=0, (6)
where
Aqr = p*. (7)
Conversely, consider any line (6) whose coefficients satisfy (7) with
q # 0. Dividing (6) by g gives

Zzx+y+rz:0.
q q

This has the form of (5) for a = —p/2q, since the coefficient of x is
p/q = —2a and the coefficient of z is

r_4qr _ P (—p\'_
q_wz_mz_(m>_a'
Together with the previous paragraph, this shows that the tangents to
yz = x? at points of the Euclidean plane are exactly the lines in (6) whose
coefficients satisfy (7) with g # 0.

As we saw in the discussions accompanying Figure 5.2 and following
the proof of Theorem 5.2, the parabola yz = x? has one point at infinity,
and it is tangent there to the line at infinity z = 0. On the other hand,
setting ¢ = 0 in (7) gives p = 0, and so (6) becomes the line at infinity
vz = 0 for r # 0. Thus, the tangent to yz = x? at its one point at infinity
is the one line (6) given by (7) with g = 0.

The last sentences of the two previous paragraphs show that the
tangent lines to yz = x* are exactly the lines in (6) as p, g, r vary over
all triples of real numbers that satisfy (7) and are not all zero. These lines
are the images under the basic polarity of the points (p,q,7) on the
parabola 4qr = p?. In short, the basic polarity matches up the points of
the parabola 4yz = x* with the tangents of the parabola yz = x. O

We use transformations to replace the parabola yz = x* in Theorem
7.2 with any conic K. We prove that the tangents of K are the lines
p*x+q*y +7r*z =0 whose coefficients p*, g*, r* satisfy the quadratic
equation of a conic K*.

Theorem 7.3
For any conic K, there is a conic K* such that the basic polarity interchanges
the tangent lines of K with the points of K*.

Proof
There is a transformation that takes yz = x to K (by the discussion be-
fore Theorem 5.9 and the fact that we can reverse transformations). This
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transformation takes the tangents of yz = x? to the tangents of K (since
transformations preserve lines and intersection multiplicities).

Let the transformation be given by (5) and (6) of Section 3. As in (13)
of Section 3, the transformation induces a reversible map of lines

px+qy+rz=0—px+qy+rz=0 (8)
given by the three equations
p* = Ap+ Dq + Gr,
q* = Bp+ Eq + Hr,
r*=Cp+Fq+1Ir.

We can use the same three equations to define a map that sends any
point (p, q,7) to the point (p*, g*, r*) with coordinates given by the equa-
tions. Because the map of lines in (8) is reversible, so is the map of points

(p,a,r) — (p*,q",7").

Thus, this map of points is a transformation, and so it takes the parabola
4qr = p? to a conic K*.

By Theorem 7.2, the tangents to the parabola yz = x* are the lines
px+qy+rz=0 for 4qr = p?. These lines are mapped to the tangents
of K by a transformation taking them to the lines p*x+qg*y+r*z=20
for all points (p*,q*,r*) on a conic K* (by the last three paragraphs).
Thus, the tangents of K are the lines p*x + q*y + r*z = 0 that the basic
polarity interchanges with the points of K*. O

The basic polarity interchanges points and lines in pairs. By the last
theorem, the basic polarity interchanges the tangent lines of any conic
K with the points of a conic K*. Likewise, the basic polarity interchanges
the tangent lines of K* with the points of a conic K**. The next result
shows that K* = K, and so the basic polarity interchanges the tangent
lines of each of the conics K and K* with the points of the other.

Theorem 7.4

Let K be a conic in the projective plane. Then the basic polarity interchanges
the tangent lines of K with the points of a conic K*, and it interchanges the
tangent lines of K* with the points of K. For any point X of K, if the tangent to
K at X is interchanged by the basic polarity with a point X* of K*, then the
tangent to K* at X* is interchanged with the point X.

Proof

The basic polarity interchanges the tangent lines of K with the points of
a conic K* (by Theorem 7.3). Let tan X be the tangent line to K at a point
X of K. The basic polarity interchanges tan X with a point X* of K* (Fig-
ure 7.2). Tan X*, the tangent line to K* at X*, is the unique line that in-
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tan X tan X*
K*

Figure 7.2

tersects K* only at X* (by Theorem 5.2). Because the basic polarity inter-
changes points and lines while preserving incidence, it interchanges
tan X* with the unique point on tan X that lies on no other tangents of
K. Since X is such a point (by Theorem 5.2), the basic polarity inter-
changes tan X* with X. As X varies over the points of K, X* varies over
the points of K*, and the basic polarity interchanges the tangents of each
of the conics K and K* with the points of the other. O

By Theorem 7.4, we can dualize results about conics as follows: the
points and tangents of a conic K become, respectively, the tangents and
points of a conic K*. Specifically, if a point X of K dualizes to the tangent
to K* at a point X*, then the tangent to K at X dualizes to the point X*.

We can now obtain a number of results about the envelope —the set of
tangents —of a conic by dualizing results about the points of a conic. For
example, Theorem 5.10 states that five points in the projective plane,
no three of which are collinear, lie on exactly one conic. Dualizing this
theorem gives the following result:

Theorem 7.5
Five lines in the projective plane, no three of which are concurrent, are tan-
gent to exactly one conic. ]

As we observed after the proof of Theorem 5.10, Theorem 5.2 implies
that no three points on a conic are collinear. Dualizing this result shows
that no three tangents of a conic are concurrent. This shows why we need
to assume in Theorem 7.5 that no three of the given lines are concurrent.

Let A be any point on a conic K. Theorem 5.2 states that any line
through A except tan A intersects K at exactly two points, A and one
other. Dualizing this result shows that every point on tan A except A lies
on exactly two tangents of K, tan A and one other. This strengthens the
result that no three tangents of K are concurrent.

Pascal’'s Theorem 6.2 states that the points Q = ABNDE, R=
BCNEF, and S=CDNFA are collinear for any six points A-F on a
conic. Dualizing Pascal’s Theorem gives the following result, known as
Brianchon’s Theorem:
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Theorem 7.6 (Brianchon’s Theorem)

Let a-f be six tangents of a conic in the projective plane. Then the lines
g=(anb)(dne), r=(bnc)enf), and s=(cnd)(f na) are concurrent
(Figure 7.3). O

Pascal’s Theorem states that the three pairs of opposite sides of a
hexagon ABCDEF inscribed in a conic intersect in three collinear points.
The dual result, Brianchon’s Theorem, refers to a hexagon abcdef whose
sides are tangents of a conic, a hexagon circumscribed about a conic
(Figure 7.3). We call

{anb,dne}, {bncenf}, {cndfna}

the three pairs of opposite vertices of hexagon abcdef. They determine
the lines g, 7, s in Brianchon’s Theorem. Thus, Brianchon’s Theorem
states that the three pairs of opposite vertices of a hexagon circumscribed
about a conic determine concurrent lines.The fact that no three tangents
of a conic are concurrent, as noted before Theorem 7.6, implies that no
two vertices of a circumscribed hexagon are equal.

As a final example, we dualize Theorem 6.3, which states that Q =
tanA N CE, R=tanEnN AC, and S=tanCnEA are collinear for any
three points A, C, E on a conic (Figure 6.7). The three tangents tan A,
tan C, tan E and the three points A, C, E dualize to three points A, C, E
on a conic and to tan A, tan C, tan E, respectively (by the last sentence of
Theorem 7.4). Thus, Theorem 6.3 dualizes to the following result:

Theorem 7.7

Let A, C, E be three points on a conic in the projective plane. Then the three
lines q = A(tanC ntanE), r = E(tan A ntan C), and s = C(tanE Nntan A)
are concurrent (Figure 7.4). O

We can simplify the statement of Theorem 7.7 by setting A’ =
tanCntanE, C' =tanEntanA, and E =tanA ntanC. Theorem 7.7
states that the three lines AA’, CC’, EE' are concurrent for any three
points A, C, E on a conic (Figure 7.4). This proves Theorem 5.3.
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Figure 7.4

We end this section by developing a simple way to construct the
envelope of a conic. We show that we obtain all the tangents of a conic
if we join each point of a line [ to its image under a transformation that
maps [ to another line m and does not fix [ nm.

Theorem 7.3 shows that the tangents of the parabola yz = x? are the
lines

px+qy+rz=0, (9)

where 4qr = p?. The transformation that interchanges x and z acts on the
line in (9) by interchanging p and r. Thus, the tangents of xy = z* are the
lines given by (9) for

4pg = r*. (10)

Setting ¥ = 0 in (10) gives p = 0 or g = 0. Thus, the coordinate axes
y =0 and x = 0 are tangents of xy = z?; in fact, they are the asymptotes
of the hyperbola xy = 1 (Figure 3.1), in agreement with the discussion
before Theorem 5.3. If r is nonzero in (10), then so is p, and we can
divide (9) by p and relabel g and r. Thus, we can assume that p = 1 and
4q = v2. In short, the tangents to xy = z2 are the coordinate axes and the
lines

72
X+Zy+1fz:0, (11)

for all nonzero real numbers 7. Setting z = 1 and either y = 0 or x = 0 in
(11) shows that this line intersects the x-axis at (—r,0) and the y-axis at
(0, —4/7).

On the other hand, consider the equations

¥ =y, Yy =4z, 7z =x. (12)

These equations give a transformation because they can obviously be
solved for x, y, z in terms of ¥, y’, z’. Since this transformation maps
(t,0,1) to (0,4,t), it takes the point (¢,0) on the x-axis to the point
(0,4/t) on the y-axis for all nonzero numbers t. Setting t = —r in the last
two sentences of the previous paragraph shows that we obtain all the
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tangents to the hyperbola xy = 1 except the asymptotes by joining each
point (¢,0) on the x-axis for t # 0 to its image (0, 4/t) on the y-axis under
the transformation in (12). The two remaining points on the x-axis are
the origin and the point at infinity. The transformation in (12) maps the
origin (0,0, 1) to the point (0, 4, 0) at infinity on vertical lines, and these
two points determine the y-axis x = 0. The transformation maps the
point (1,0,0) at infinity on the x-axis y = 0 to the origin (0,0,1), and
these two points determine the x-axis y = 0.

In short, the transformation in (12) maps points on the x-axis to points
on the y-axis, and the lines that join corresponding points form the
envelope—the set of tangents—of the hyperbola xy = z?. The transfor-
mation maps the point (¢,0) on the x-axis to the point (0,4/t) on the y-
axis for any t # 0. Figure 7.5 gives various values of t and 4/t, and Figure
7.6 shows the lines through the corresponding points (¢,0) and (0, 4/t).
As t varies, these lines are the tangents to the hyperbola xy = 1 (sketched
in Figure 3.1) at points of the Euclidean plane.

We can generalize this result by replacing the transformation in (12)
that maps the x-axis to the y-axis with any transformation that maps a
line [ to another line m and does not fix the point I nm. This generaliza-
tion follows from the previous example and Theorem 3.4, which shows
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Figure 7.7

that four points, no three of which are collinear, can be transformed into
any other such points.

Theorem 7.8

Let X — X' be a transformation that maps a line 1 to a line m # 1 and does
not fix lnm. As X varies over all points of 1, the lines XX’ form the envelope
of a conic.

Proof

The given transformation X — X’ matches up the points of [ and m, and
it does not map the point P = [ nm to itself. Thus, there is a point A on [
other than P that the transformation maps to P, and the image of P under
the transformation is a point B on m other than P (Figure 7.7).

Let C be a point of [ other than A and P. The transformation maps C to
a point C" on m other than P and B. Since none of the points A, B, C, C’
equals P, neither A nor C lies on m = BC’, and neither B nor C' lies on
I = AC. Thus, no three of the four points A, B, C, C' are collinear.

The x-axis y = 0 contains the point (1,0, 0) at infinity and the point
(1,0,1) one unit from the origin. The y-axis x = 0 contains the point
(0,1,0) at infinity and the point (0,4,1) four units from the origin.
Neither (1,0,0) nor (1,0,1) lies on the y-axis—the line through (0,1, 0)
and (0,4, 1) —and neither (0, 1,0) nor (0,4, 1) lies on the x-axis—the line
through (1,0,0) and (1,0,1). Thus, no three of the four points (1,0, 0),
(1,0,1), (0,1,0), (0,4,1) are collinear.

By Theorem 3.4 and the last two paragraphs, there is a transfor-
mation X — X* that maps A — (1,0,0), B— (0,1,0), C — (1,0,1), and
C" —(0,4,1). This transformation maps [ = AC to the line through
(1,0,0) and (1,0, 1) —the x-axis—and it maps m = BC' to the line through
(0,1,0) and (0, 4, 1) —the y-axis. Thus, the transformation maps P =l nm
to the intersection of the x- and y-axes—the origin (0,0, 1).

We take the given transformation X — X', precede it with the reverse
of the transformation X — X* just defined, and follow it with the trans-
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formation X — X*. This gives the sequence of transformations
X=X —-X — X" (13)

As X* varies over the x-axis, X varies over I, X' varies over m, and X’*
varies over the y-axis. The sequence of transformations in (13) maps

(1,0,0) = A — P —(0,0,1), (14)
(0,0,1) - P— B —(0,1,0), (15)
(1,0,1) = C — C" — (0,4,1). (16)

The sequence of transformation in (13) is itself a transformation, and
so there are constants a-i such that this transformation maps

(x%,y,z) — (ax + by + cz,dx + ey + fz,gx + hy + iz).

This map takes (1,0,0) to (0,0,1) (by (14)), and so we have a =0 and
d = 0. The map also takes (0,0,1) to (0,1,0) (by (15)), and so we have
¢ =0 and i = 0. Thus, the transformation in (13) maps

(%, y,2) — (by, ey + fz,8x + hy).
This map takes (1,0,1) to (0,4,1) (by (16)), and so we have f = 4g. In
short, the transformation in (13) maps

(X7 Y, Z) - (by: ey + 4gZ, gx —+ Z/Ly)

Setting y = 0 shows that (x, 0, z) maps to (0, 4gz, gx). It follows that g is
nonzero, and so (0, 4gz, gx) represents the same point as (0, 4z, x) for x
and z not both zero. Thus the transformation in (13) maps

(x%,0,2z) — (0,4z,x) (17)

for any point (x, 0, z) on the x-axis. Comparing (17) with (12) shows that
the transformation in (13) maps each point on the x-axis to the same
point on the y-axis as the transformation in (12). The discussion after
(12) shows that we get the envelope of xy = z2 by joining each point on
the x-axis to its image on the y-axis under the transformation in (12).
Thus, the same result holds for the transformation in (13).

We now know that the tangents of xy = z? are the lines X*X'* for all
points X* on the x-axis (since the transformation in (13) maps X* to
X'*). Because the reverse of the transformation X — X* is itself a trans-
formation, it preserves conics and tangents. Thus, the lines XX’ are the
tangents of a conic as X varies over the points of [. O

Exercises

7.1. A theorem is stated in each of the following exercises. Use Theorem 7.4
to state the dual of each theorem in terms of conics and tangents, as in
Theorems 7.5-7.7. lllustrate the results you state by drawing one figure
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7.2.

7.3.

7.4.

7.5.

7.6.

for each of the parts (a)-(p) and the four possibilities in (q) (as in Exercise
6.20).

(a) Exercise 5.2. (b) Exercise 5.3.

(c) Exercise 5.4. (d) Exercise 5.5.

(e) Exercise 5.12. (f) Exercise 5.14.
(g) Exercise 6.7. (h) Exercise 6.8.

(i) Exercise 6.9. (j) Exercise 6.10(a).
(k) Exercise 6.10(b). (1) Exercise 6.10(c).
(m) Exercise 6.11. (n) Exercise 6.12.
(o) Exercise 6.13. (p) Exercise 6.14.
(q) Exercise 6.19.

State the duals of the following theorems, which are proved in Exercise
16.9. Draw figures to illustrate the stated theorems and their duals.

(a) Theorem. Let A, B, C, D, E be five points on a conic. Set F = AB N CD,
G =ADNBC, and H = tan A ntan B. Then tan E contains F if and only if E
lies on line GH.

(b) Theorem. Let A, B, C, D be four points on a conic. Set P =tan A ntan B
and Q = tan C ntan D. Then P lies on CD if and only if Q lies on AB.

Use single-variable calculus and the discussion after the proof of Theorem
4.10 to show that the tangents to xy = 1 in the Euclidean plane are the lines
determined by the pairs of points (t,0) and (0,4/t) for all real numbers
t # 0, as observed after (12). Do not transform xy = 1 into another curve.

Let five tangents a, ¢, d, e, f of a conic K be given.

(a) Use Exercise 7.1(a) to describe how to use a straightedge to construct
the point at which a is tangent to K.

(b) Let P be any point on a that does not lie on ¢, d, e, f, or K. Use Brian-
chon’s Theorem 7.6 to describe how to use a straightedge to construct
the line through P other than a that is tangent to K. (Such a line exists,
by the discussion after Theorem 7.5.)

Let a point A on a conic K, the tangent a at A, and three other tangents ¢, e,

and f be given.

(a) Use Exercise 7.1(b) to describe how to use a straightedge to construct
the point at which c is tangent to K.

(b) Let P be any point on ¢ that does not lie on a, e, f, or K. Use Exercise
7.1(a) to describe how to use a straightedge to construct the line through
P other than a that is tangent to K. (Such a line exists, by the discussion
after Theorem 7.5.)

Suppose that we are given two points A and C on a conic K, the tangents a

and c at A and C, and a third tangent e.

(a) Use Theorem 7.7 to describe how to use a straightedge to construct the
point at which e is tangent to K.

(b) For any point P on a other than A, a n¢, and a N e, use Exercise 7.1(b)
to describe how to use a straightedge to construct the line through P
other than a that is tangent to K. (Such a line exists, by the discussion
after Theorem 7.5.)
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7.7.

7.8.

7.9.

7.10.

7.11.

II. Conics

Let X — X’ be a transformation that maps a line [ to a line m # [ and does
not fix the point I nm. By Theorem 7.8, the lines XX’ form the envelope of
a conic K as X varies over all points of I. Let A be the point that the trans-
formation maps to nm, and let B be the image of [ nm under the trans-
formation. Prove that K is tangent to [ at A and tangent to m at B.

Let p and g be nonzero real numbers.

(a) Prove that there is a transformation that maps the point (¢,0) on the
x-axis to the point (0, pt + q) on the y-axis for all real numbers t and
that maps the point at infinity on the x-axis to the point at infinity on
the y-axis. Conclude that there is a parabola K whose tangents in the
Euclidean plane are the lines joining the points (t,0) and (0, pt + q) for
all real numbers t.

(b) Prove that K is tangent to the x-axis at (—q/p,0) and to the y-axis at
(0,9).

(c) Prove that K is tangent to the line at infinity at the point on lines of
slope —p. (This shows that —p is the slope of the axis of symmetry of
K. One possible approach is to determine what real numbers are the
slopes of tangents of K.)

Nonzero real numbers p and g are given in each part of this exercise.
By Exercise 7.8(a), there is a parabola K whose tangents in the Euclidean
plane are the lines through the points (¢,0) and (0, pt + gq) for all real num-
bers t. Construct a chart analogous to Figure 7.5 that gives a number of cor-
responding values of t and pt + g. Then draw a figure analogous to Figure
7.6 showing the lines through the points (t,0) and (0, pt + q) for the values
in the chart. Sketch K itself on the same figure, and mark the points in
Exercise 7.8(b) where K is tangent to the x- and y-axes.

(a) p=1andq=3. (b) p=—1andg=4.

(¢) p=2andq=—-3. (d) p=—iandqg=-2.

Let p, g, r be real numbers such that p # 0 and r # 0.

(a) Prove that the equations ¥’ =x+py, y =qy+rz, and z' =y give a
transformation by solving these equations for x, y, z in terms of ', i/, z'.

(b) Prove that the transformation in (a) maps the y-axis x = 0 to the line
x = p and does not fix the point at infinity where these lines intersect.

(c) Conclude from parts (a) and (b) and Theorem 7.8 that there is an
ellipse or a hyperbola K whose tangents (including the asymptotes of
a hyperbola) are the lines x =0 and x =p and the lines through
the points (0,t) and (p, (gt +7)/t) in the Euclidean plane for all real
numbers t # 0.

(d) Prove that K is tangent to the y-axis at the origin and tangent to x = p at
the point (p, q).

An expression of the form (gt + r)/t is given in each part of this exercise for
real numbers g and r such that r # 0. Take p = 4, and let K be the ellipse or
hyperbola determined in Exercise 7.10(c). Construct a chart analogous to
Figure 7.5 that gives a number of corresponding values of t and (gt +7)/t.
Then draw a figure analogous to Figure 7.6 showing the lines through the
points (0,t) and (p, (gt + r)/t) for the values in the chart. Sketch K itself on
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7.12.

7.13.

7.15.

the same figure, and mark the points in Exercise 7.10(d) where K is tangent
to the y-axis and x = p.

(a) 6/t (b) —6/t. (c) ZttH.
2t—4 —t+3 t-3
(d) r (e) ra (f) -

Let K be a parabola that is tangent to the x-axis at a point A and tangent to
the y-axis at a point B. Prove that there are nonzero numbers p and g such
that the construction in Exercise 7.8 gives a parabola K’ that is also tangent
to the x-axis at A and tangent to the y-axis at B. Conclude from Theorems
4.11 and 5.9 that K = K’. (This shows that the construction in Exercise 7.8
gives all parabolas tangent to the x- and y-axes. Since every parabola has
two perpendicular tangents, it follows that the construction gives every
parabola in an appropriate coordinate system.)

Let K be an ellipse or a hyperbola that is tangent to the y-axis at the origin
O and tangent to the line x = p for a real number p # 0 at a point B in the
Euclidean plane. Let n be a line in the Euclidean plane that is tangent to K
and not vertical. Prove that there are real numbers g and r such that r # 0,
and the construction in Exercise 7.10 gives an ellipse or hyperbola K’ that is
tangent to x = 0 at the origin, tangent to x = p at B, and tangent to n in the
projective plane. Conclude from Theorems 4.11 and 5.9 that K = K'.

(This shows that the construction in Exercise 7.10 gives every ellipse or
hyperbola tangent to the y-axis at the origin and tangent to another vertical
line. Since every ellipse and hyperbola has two parallel tangents, it follows
that the construction in Exercise 7.10 gives every ellipse or hyperbola in an
appropriate coordinate system.)

. In the projective plane, let A and B be two points on a conic K, and let [ and

m be the tangents at A and B, respectively (Figure 7.7). Set P =1 nm. Letn
be a tangent of K other than [ and m, and set C =l nn and C' = mnn. De-
duce from Exercise 3.10, Theorem 5.2, and the discussion after Theorem
7.5 that there is a transformation that maps A — P, P — B, and C — C'.
Conclude from Theorems 4.11 and 5.9 that this transformation gives rise
to K via the construction in Theorem 7.8.

(This shows that any conic can be constructed as in Theorem 7.8 with
respect to any two of its tangents.)

Let p, q, r be real numbers such that p # 0 and » # 0.
(a) For any nonzero number ¢, prove that the line through the points (0, t)
and (p, (gt + r)/t) has slope m, where

t2 + (mp—q)t —r =0.

(b) Let K be the conic in Exercise 7.10(c). If r > 0, prove that K has two
tangents of every slope and is therefore an ellipse. If < 0, prove that
K does not have tangents of every slope and is therefore a hyperbola.

(c) Show that a tangent in the projective plane of a hyperbola is an
asymptote if and only if there is no other tangent parallel to it in the
Euclidean plane. If r < 0, prove that +|r|'/? are the two values of t
that give asymptotes of the hyperbola constructed in Exercise 7.10.
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7.16.

7.17.

7.18.

II. Conics

Let A, B, C, A', B/, C’ be six points such that no three of these points are
collinear and no three of the six lines a = BC, b= CA, ¢ = AB, a' = B'C/,
b’ =C'A, and ¢’ = A'B’ are concurrent. Noncorresponding sides of trian-
gles ABC and A'B'C’ intersect at the six points

anl', anc, bnc, bnd, cnd, cnb, (18)

and noncorresponding vertices of the triangles determine the six lines
, CB. (19)

Assume that no three of the points in (18) are collinear and that no three of
the lines in (19) are concurrent. Prove that the six points in (18) lie on a
conic if and only if the six lines in (19) are tangent to a conic. Illustrate
this result with a figure.

(Hint: Pascal's Theorem 6.2 and its converse in Exercise 6.7 give a
criterion for the points in (18) to lie on a conic. Duality gives a criterion
for the lines in (19) to be tangents of a conic. These criteria are related by
Desargues’ Theorem, from Exercise 3.20.)

Let A, B, C, A, B, C' be six points, no three of which are collinear. Set

a=BC,b=CA,c=AB,a' =BC',b =CA’, and ¢’ = A'B’. Prove that the

following conditions are equivalent.

(i) The lines a, b, ¢, a’, b', ¢’ are tangent to a conic.

(ii) There is a transformation that takes Btoa’ n¢, Ctoa’ nb, anc to B,
andanb' to C.

(iii) There is a transformation that takes b to A’C, ¢ to A'B, AC’ to b’, and
AB' to .

(iv) The points A, B, C, A’, B, C' lie on a conic.

Tustrate this result with a figure where both (i) and (iv) hold.

(Hint: The equivalence of (i) and (ii) follows from Theorem 7.8 and Ex-
ercises 3.13 and 7.14. Use the theorem in Exercise 3.19 and the reversibility
of transformations to show that (ii) implies (iii). Conclude that (i)-(iv) are
equivalent by applying the basic polarity and using Theorem 7.4 and the
discussion of (8).)

Let K be the conic x2/a? + y%/v =1 for numbers a > 0 and v # 0. Let (s, t)

be a point in the Euclidean plane.

(a) Assume that the line of slope m through (s, t) is tangent to K at a point
of the Euclidean plane with x-coordinate r. Deduce from Theorem 4.3
and Definition 4.9 that the quadratic polynomial with indeterminate x

(@*m® +v)x? + 2a’m(t — sm)x + a®[(t — sm)?

— )
factors as k(x — r)2 for a nonzero number k. Explain why it follows that
4a*m?(t — sm)?* = 4a*(a*m?* 4+ v)[(t — sm)? — V],
and simplify this equation to
(82 —a®>)ym? = 2stm+t> —v = 0. (20)

(b) Letc, d, e be real numbers, and let m be an indeterminate. If the quad-
ratic equation cm? + dm + e = 0 has roots that are negative reciprocals,
prove that e = —c.
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7.19.

7.20.

7.21

7.22.

(c) If (s,t) lies on perpendicular lines that are tangent to K at points of the
Euclidean plane and are not horizontal or vertical, deduce from (a) and
(b) that

s24+t2=a’+v.

Let K be the ellipse x%/a? + y?/b? = 1 for positive numbers a and b. Prove
that there is a circle C such that every rectangle circumscribed about the
ellipse K is inscribed in C. Use Exercise 7.18(c) and also consider a rectan-
gle with horizontal and vertical sides. [llustrate the result with a figure that
shows an ellipse K that is not a circle, the corresponding circle C, and sev-
eral rectangles circumscribed about K.

(C is called the director circle of the ellipse K.)

Let K be the hyperbola x%/a? — y?/b? = 1 for positive numbers a and b. If
a > b, prove that there is a circle C that contains the points of intersection
of all pairs of perpendicular tangents of K. If a < b, prove that no two per-
pendicular lines are tangent to K at points of the Euclidean plane. Illustrate
this result with two figures: one that shows K for a > b, the corresponding
circle C, and several pairs of perpendicular tangents to K, and another fig-
ure that shows K for a < b. (See Exercise 7.18(c). For a > b, the circle C is
called the director circle of the hyperbola K.)

. Let K be the parabola 4py = x? for p # 0.

(a) Consider the line of slope m through a point (s,t) of the Euclidean
plane. If the line is tangent to K at a point of the Euclidean plane, use
the approach of Exercise 7.18(a) to show that

pmz—sm—i-t:O.

(b) The directrix of K is the line y = —p. Use (a) and Exercise 7.18(b) to
deduce that perpendicular tangents of K intersect at points on the di-
rectrix. Ilustrate this result with a figure that shows K, several pairs
of perpendicular tangents, and the directrix.

Let K be the conic ¥?/a? + y?/v =1 for numbers a >0 and v # 0 with

a’ > v. A focus of K is a point (¢, 0) with ¢? = a? — v. (Writing v = +b? for

b > 0 shows that K is an ellipse or a hyperbola with foci determined as usu-

al.)

(a) Let (s,t) be a point on a line of slope —1/m through a focus (c, 0) for a
nonzero number m. Verify that

(m? +1)(s® + 12 —a?) = (t —sm)? — m?a® —v.

(b) Prove that the circle D of radius a centered at the origin contains the
feet of the perpendiculars dropped from a focus of K to all tangents of
K. Use (a) and Equation (20), and consider horizontal and vertical tan-
gents as well.

(c) Mlustrate the result in (b) with two figures, one where K is an ellipse
and not a circle, and one where K is a hyperbola. In each figure, show
K, D, several tangents of K, and the perpendiculars dropped from both
foci of K to the tangents shown.



126

7.23.

7.24.

7.25.

7.26.

7.27.

7.28.

II. Conics

For p # 0, the parabola 4py = x? has focus (0, p). Use Exercise 7.21(a) to
prove that the tangent at the vertex (0, 0) contains the feet of the perpendic-
ulars dropped from the focus to all tangents. Illustrate this result with a fig-
ure that shows the parabola, the tangent at the vertex, several other tan-
gents, and the perpendiculars dropped from the focus to the tangents
shown.

Let F =0 be a curve of degree 4 that contains four singular points and at
least one other point. Prove that F has a factor of degree 1 or 2.

(Hint: One possible approach is to show that there is curve of degree 2—
a conic or two lines—through the four singular points and a fifth point of F.
Conclude from Theorems 4.5, 4.11, and 5.9 that F has a factor of degree 1
or 2.)

This exercise shows that we cannot omit the assumption in Exercise 7.24
that F contains at least one point besides the four singular points. Consider
the polynomial of degree 4

gy =* -1+ - 1)~

(a) Prove that the curve g = 0 consists of exactly four points in the projec-
tive plane.

(b) Prove that g is singular at each of the points in (a).

(c) Prove that g has no factors of degree 1 or 2. (See part (a) and Theorem
5.1.)

This exercise shows that we cannot reduce the number of singular points
in Exercise 7.24. Consider the polynomial
H(xy,2) = y*(x* +x+1) —x%

(a) Prove that H is singular at the three points (0,0, 1), (0,1,0), (1,0, 0).
(b) Prove that H contains infinitely many points.
(c) Prove that H has no factors of degree 1 or 2.

Let K be the circle of radius r centered at the origin for » > 0. Associate K
with a conic K* as in Theorem 7.4. Prove that K = K* if and only if r = 1.

Let K be the parabola yz = ax? for a # 0. Associate K with a conic K* as in
Theorem 7.4. Prove that K = K* if and only if a = i%.
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Introduction and History

Introduction

This chapter is devoted to classifying irreducible cubics. These are curves
of degree 3 given by polynomials that do not have factors of degree 1 or 2.
We prove that every irreducible cubic can be transformed into the form

Y =x+fx*+gx+h (1)
for real numbers f, g, h.

The proof has two main steps. First, we prove in Section 8 that an ir-
reducible cubic C can be transformed into (1) if it has a flex (i.e., a gen-
eralized inflection point) or a singular point. Second, we prove in Section
12 that there is a flex on every irreducible cubic that is nonsingular (i.e.,
has no singular points), and so the previous sentence applies to all irre-
ducible cubics.

In Section 9, we interrupt our work on the classification of cubics to
discuss one of their most important properties. We use collinearity of
points to define addition on a nonsingular, irreducible cubic C that has
a flex O. This definition makes C an abelian group, which means that
the sum of two points of C is again a point of C, addition is commutative
and associative, O is an identity element, and every point of C has an
additive inverse. A central problem in number theory is to determine
the set C* of points of C that have rational coordinates, when C is given
by (1) for rational numbers f, g, h. The key to this problem is to observe
that C* is itself a group whose structure can be analyzed.

127
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Sections 10 and 11 lay the groundwork for us to complete the classi-
fication of cubics in Section 12. We introduce the complex numbers in
Section 10 and prove the Fundamental Theorem of Algebra, which states
that every polynomial in one variable factors completely over the com-
plex numbers. We introduce points with complex coordinates in Section
11. The Fundamental Theorem of Algebra ensures that curves have “as
many intersections as possible” over the complex numbers. This yields
Bezout's Theorem, which states that the number of times that two curves
without a common factor intersect in the complex projective plane is the
product of their degrees.

We complete the classification of irreducible cubics in Section 12 by
proving that every nonsingular, irreducible cubic C has a flex. The Hes-
sian H of C is a cubic formed from the second partial derivatives of C.
The points of intersection of C and H are the flexes of C. We use Bezout’s
Theorem from Section 11 to prove that C and H intersect exactly nine
times, counting multiplicities, over the complex numbers. Because nine
is odd, and because the intersections of C and H over the complex num-
bers are interchanged in pairs by conjugating their coordinates, it follows
that C and H intersect at least once over the real numbers. Thus, every
nonsingular, irreducible cubic C has a flex over the real numbers, as
desired.

We end the chapter by asking how many points determine a cubic.
We seek an analogue of Theorem 5.10, which says that a conic is
uniquely determined by five points, no three collinear. Because the
equation of the general cubic

ax® 4+ bx*y + cxy® + dy® + ex® + fxy + gy
+hx+iy+j=0

has ten coefficients but can be multiplied by a nonzero constant, cubics
have nine “degrees of freedom.” This suggests that nine points generally
lie on a unique cubic, and we see in Section 13 when they do.

History

Newton’s classification of cubics in the late 1600s was the first great suc-
cess of analytic geometry apart from its role in calculus. Newton claimed
that the equation of every cubic in the Euclidean plane could be simpli-
fied to one of the forms

xy? +ey =ax® +bx* +cx+d, (2)
xy = ax® + bx* + cx +d, (3)
y> =ax® +bx* +cx +d, (4)
y=ax®+bx*+cx+d, (5)
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by an appropriate choice of the coordinate axes, which were not re-
quired to be perpendicular in Newton’s time. James Stirling published a
proof of Newton’s claim in 1717, possibly in collaboration with Newton.
The key to Stirling’s proof is to consider the family of chords of the cubic
parallel to an asymptote, find the locus of the midpoints of the chords,
and choose coordinate axes to simplify the equation of the locus.

Newton multiplied (2) by x and completed the square of the left-hand
side to obtain the equation

(xy +3e)* = ax* + bx*> + cx* + dx + e’ (6)

By considering the roots of the right-hand sides of (2)-(6), he divided
cubics into 72 species. Stirling identified four more species, and Jean-
Paul de Gua de Malves found another two in 1740, giving a total of 78
species of cubics.

Newton also made the remarkable assertion that all cubics could be
obtained from those in (4) by projecting between planes. This chapter
centers around proving Newton's assertion for irreducible cubics, with
the change that projections are replaced by their algebraic equivalent,
transformations.

The first proofs of Newton's assertion appeared in 1731, due inde-
pendently to Alexis Clairaut and Francois Nicole. Clairaut considered
the graph of the equation

zy* = ax® + bx’z + cxz* + dz° (7)

in three-dimensional-Euclidean space. Equation (7) is homogeneous and
yields (4) when we set z = 1. It follows that (7) describes a cubical cone
having the origin as vertex; that is, the graph consists of the lines joining
the origin to the cubic given by (4) in the plane z = 1. Clairaut showed
that every cubic in (2)-(5) is the intersection of a plane and a cubical
cone given by (7), which proves Newton'’s assertion.

Among the important attributes of cubics are flexes, which are gen-
eralizations of inflection points. Clairaut asserted in 1731 that an irredu-
cible cubic has from one through three inflection points over the real
numbers (Exercises 12.8 and 12.18). For irreducible cubics having three
inflection points, de Gua proved in 1740 that the inflection points are
collinear (Exercises 8.6 and 9.2(c)). Pliicker argued in 1834 that a non-
singular cubic has nine flexes over the complex numbers that lie by
threes on twelve lines (Exercise 12.24). His argument was completed in
1844 by Ludwig Hesse, who characterized flexes with a determinant of
second partial derivatives that is now called a Hessian (Theorem 12.4).

Suppose that the cubic C in (1) has rational coefficients. If we take
the tangent line through a point of C with rational coordinates, or if we
take the secant line through two points of C with rational coordinates,
the line intersects C at another point that has rational coordinates, as
we discuss in Section 9. Applying this tangent-secant construction re-



130 III. Cubics

peatedly can produce any number of points of C with rational coordi-
nates from just one. This addresses a central problem of number theory,
finding the rational solutions of equations. An ad hoc algebraic version
of the tangent-secant construction was introduced by Diophantus, who
lived in Alexandria during the third century a.p. Fermat systematized
the construction algebraically, and Newton interpreted it geometrically
in terms of tangents and secants.

Complex numbers were introduced in the 1500s to solve cubic equa-
tions in one variable. They were reintroduced in the 1700s to facilitate
integration by partial fractions. Mathematicians gradually developed
proficiency in working with complex numbers, and their confidence in-
creased when Carl Friedrich Gauss gave four proofs of the Fundamental
Theorem of Algebra in the first decade of the 1800s. Jean d’Alembert had
given an incomplete proof of the Fundamental Theorem in 1746. The
main gap in his proof was filled in 1806 when Jean Argand proved a
result generally called “d’Alembert’s Lemma” (Claim 5 of Section 10).
In fact, no truly complete proof of the Fundamental Theorem could be
given until the 1870s, when Georg Cantor and Richard Dedekind devel-
oped the real numbers formally and Karl Weierstrass derived the basic
properties of continuous functions. The proof in Section 10 of the Funda-
mental Theorem is based on the paper of Charles Fefferman cited in the
References, which modernizes and simplifies the work of d’Alembert
and Argand.

The idea of a complex curve—an algebraic curve whose coefficients
and variables are complex numbers—emerged over centuries. Analytic
geometers from Newton onward considered ‘‘imaginary points” on
curves without clearly specfying the nature of these points. In the 1820s,
Jean Poncelet and Michel Chasles argued for using imaginary points sys-
tematically in synthetic projective geometry. In 1830, Pliicker clarified
the nature of imaginary points when the homogeneous coordinates he
introduced made it possible to consider points with complex coordinates.
Nevertheless, complex curves were not generally considered natural
objects of study until Georg Riemann proposed in 1851 a way to consider
them topologically: the “Riemann surface” of a polynomial equation
f(w,z) = 0 consists of sheets that lie over the complex z-plane and cor-
respond to the values of w determined by the equation. In the 1860s,
Alfred Clebsch and Paul Gordan recast Riemann’s ideas from complex
analytic to geometric form, and the modern view of complex curves
was established.

“Elliptic integrals” are, speaking roughly, integrals that involve the
square root of a polynomial of degree 3 or 4. Unlike integrals that in-
volve the square root of a polynomial of degree 2, elliptic integrals cannot
generally be evaluated in closed form. Examples of elliptic integrals arose
from scientific and geometric considerations in the last half of the 1600s



Introduction and History 131

and the first half of the 1700s. The first examples involved arc lengths of
ellipses and led to the name “elliptic integrals.” In the mid-1700s, Leon-
hard Euler revolutionized the study of elliptic integrals by establishing
the identity

X2

Jxl o)~V gt +J

a a

X3

gl 2 ar = | gty (®)
a

for any polynomial g(t) of degree 3 of 4, where x3 is a rational function of

X1, X2, a, g(x1)Y%, g(x2)'?, gla)/?.

Certain cubics are now called “elliptic curves” because of their con-
nection with elliptic integrals. This connection was discovered by Gauss,
Niels Abel, and Carl Jacobi in the 1820s. Their results were clarified and
extended by Riemann in the 1850s, Weierstrass in 1863, and Henri
Poincaré in 1901. We summarize a small part of this work below.

Let

gty =4t +ct+d

be a polynomial of degree 3 without repeated roots. The Weierstrass
P-function

x = P(u) (9)

parametrizes the nonsingular, irreducible complex cubic

y* =g (10)
in the following sense: Equation (9) and the equation
y=Pl(u) (11)

match up the complex numbers u on and inside a parallelogram in the
complex plane with the points (x,y) of the complex cubic (10), except
that any two complex numbers u in corresponding positions on opposite
sides of the parallelogram map to the same point (x,y). The function
P(u) can be written in the form

1
P(u) = — + au® + agu’ + - -
u
for complex numbers az, ay, - ...
Equations (9)-(11) imply that

B Py =y =g,

and taking reciprocals gives

Y=g
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This implies that
u= et (12)

which means that u is a multivalued indefinite integral of the two-valued
function g(x)~'/? of the complex variable x. In short, we obtain the
Weierstrass P-function in (9) by inverting the elliptic integral in (12)
and considering x as a function of u.

The idea of parametrizing the complex cubic in (10) by inverting the
elliptic integral in (12) arose by drawing analogies with the following
familiar facts: the unit circle

yr=1-x° (13)
is parametrized by setting
x = sin(u) (14)
and
y = sin’(u) = cos(u), (15)

where the relation given by (14) is the inverse of the relation

X
u = arcsin(x) = J (1—1t3)""%ar. (16)
0
Drawing parallels between the cubic g(t) and the quadratic 1 — t? and
between the Weierstrass P-function x = P(u) and the sine function
x = sin(u) creates analogies between (9) and (14), (10) and (13), (11)
and (15), and (12) and (16).

In Section 9, we use secants and tangents to define addition of points
on a nonsingular cubic given by (10). This method of adding points
on the cubic corresponds via the Weierstrass P-function to addition of
complex numbers. Specifically, for any complex numbers u; and u,, the
point of the complex cubic (10) that corresponds via (9) and (11) to the
complex number u; + u, is the sum of the points on the complex cubic
that correspond to u; and u,. This is the geometric form of Euler’s rela-
tion (8). It corresponds to the angle-addition formula for sines via the
analogies in the previous paragraph.

The discussion accompanying (9)-(11) shows that the points of a
nonsingular complex cubic correspond to the points of a parallelogram
whose two pairs of opposite sides are glued together. Gluing together
one pair of opposite sides of a parallelogram gives a cylinder. Gluing
together the opposite ends of the cylinder gives a torus—the surface of
a doughnut. Thus, a nonsingular complex cubic is topologically equiva-
lent to a torus; that is, it can be continuously bent into the surface of a
doughnut.
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A nonsingular curve f(x,y) = 0 over the real numbers can be divided
into pieces that are each parametrized by x or y. For example, the unit
circle x* + y% = 1 can be divided into the upper and lower half-circles

y:(lfxz)l/z and y:f(lfxz)l/z,

which are each parametrized by x. The analogous result holds over
the complex numbers. In this sense, we can think of complex curves as
“one-dimensional over the complex numbers.” On the other hand, the
complex numbers are themselves two-dimensional over the reals. That
explains why a nonsingular complex cubic is topologically equivalent to
a two-dimensional surface, the torus. In this text, we always think of
complex curves as “one-dimensional over the complex numbers.” We
work with complex curves algebraically just like real curves.

Colin Maclaurin raised the following issue in 1720. On the one hand,
requiring a curve to contain a particular point imposes a linear condition
on the coefficients of the curve. A general curve of degree n has

n+2
( ) ) coefficients. Because we can multiply the coefficients by a
nonzero number without changing the curve, a curve of degree »n has

n+2 717(n+2)(n+1)717n(n+3)
2 B 2 T2

“degrees of freedom.” Accordingly, we expect that a curve of degree n
is uniquely determined by n(n + 3)/2 of its points. On the other hand,
Bezout's Theorem shows that two complex curves of degree n without
multiple intersections intersect at n? points. The last two sentences
appear to conflict because

n? >n(n+ 3)/2

for n > 3.

This apparent difficulty was explored by Leonhard Euler in 1748 and
by Gabriel Cramer in 1750, and it is now known as “Cramer’s paradox.”
Euler and Cramer suggested that there may be redundancies among the
conditions that points impose on curves. We examine this idea for cubics
in Section 13. Taking n = 3 in the first part of the previous paragraph
shows that a cubic is uniquely determined by n(n + 3)/2 = 9 conditions,
provided that the conditions are not redundant. In fact, the n? = 9 points
where two cubics intersect impose redundant conditions—otherwise, the
points would not lie on two cubics. If two cubics intersect in nine points,
any cubic through eight of the points necessarily contains the ninth, as
Exercise 13.4 shows. If nine points are to determine a unique cubic, we
show in Section 13 that we can choose eight of the points quite generally,
but we must ensure that the ninth point does not lie on every cubic
through the first eight.



134 III. Cubics

§8. Flexes and Singular Points

We classify cubics by using changes of variables to transform their equa-
tions into particularly simple form. When we classified curves of degree
2 in Theorem 5.1, we did not need additional information about the
curves in order to simplify their equations. Cubics are too complicated
to analyze so directly. In this section, we classify irreducible cubics that
have a notable point, either a flex—which is a generalized inflection
point—or a singular point. The fact that a cubic has such a point gives
us enough information about the equation to simplify it algebraically.

We prove in Section 12 that every irreducible cubic has a flex or a
singular point. Thus, we actually classify all irreducible cubics in this
section, but we cannot justify this statement until Section 12.

Formally, a cubic is a curve of degree 3 in the projective plane. Thus, a
cubic is a curve

ax® + bx*y + cxy® + dy® + ex’z + fxyz + gy’z
+hxz? +iyz® +jz° =0 (1)

in homogeneous coordinates, where a-j are real numbers that are not all
zero. The restriction of the cubic to the Euclidean plane is the curve

ax® + bx*y + cxy® + dy® + ex* + fry + gy*
+hx+iy+j=0 (2)

of degree at most 3.

Let p(x, y) be a nonconstant polynomial and F(x, y,z) a nonconstant
homogeneous polynomial. We call p or F reducible if it factors as a prod-
uct of two nonconstant polynomials, and we call it irreducible if there is
no such factorization. We also refer to the curves p =0 and F =0 and
their algebraic equivalents as reducible or irreducible.

If a cubic is reducible, it consists of a line and a curve of degree 2.
Because we have already studied lines and curves of degree 2, we con-
centrate on irreducible cubics. When the cubic in (1) is irreducible, it
does not have z as a factor; then at least one of the coefficients a-d is
nonzero, and the restriction of the cubic to the Euclidean plane in (2)
has degree exactly 3.

We need a generalization of inflection points that applies to points at
infinity as well as points in the Euclidean plane and that is preserved by
transformations. A flex of a curve G is a point P of G such that G is non-
singular at P and G intersects the tangent at P at least three times at P.
That is, G has a flex at P if it has a tangent [ at P and Ip(/, G) > 3. Trans-
formations preserve flexes because they preserve tangents and inter-
section multiplicities.

The tangent [ to a curve G at any nonsingular point P intersects
the curve at least twice there (by Definition 4.9). The stronger condition
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Figure 8.1 Figure 8.2

that Ip(l, G) > 3 characterizes flexes. For example, the curves y = x? and
y = x% are both tangent to the x-axis y = 0 at the origin (by Theorem
4.7(ii) and Definition 4.9). The x-axis intersects y = x? twice at the origin
and y = x3 three times (by the third paragraph after Example 1.12). Then
y = x% does not have a flex at the origin, but y = x* does. As Figures 8.1
and 8.2 illustrate, this suggests that flexes are generalized inflection
points. We explore this idea further in Exercises 12.13 and 12.15.

A cubic is tangent to the x-axis y = 0 at the origin if and only if it has
equation

ay + bx* + cxy + dy* = ex® + X’y + gxy® + hy? (3)

for constants a-h with a # 0 (by Theorem 4.7 and Definition 4.9). We
have collected terms of degree 1 and 2 on the left of (3) and terms of
degree 3 on the right. We divide (3) by a, as discussed after the proof of
Theorem 3.6. By adjusting the other coefficients, we can assume that
a=11n (3).

We assume that the cubic in (3) is irreducible. Then b and e are not
both zero, since y is not a factor of the cubic. The number of times that
the cubic intersects the x-axis y = 0 at the origin is the exponent of the
least power of x remaining when we substitute y = 0 in (3) (by Theorem
1.11). This exponent is 2 if b # 0, and it is 3 if b = 0 and ¢ # 0. Thus, an
irreducible cubic is tangent to the x-axis at the origin and has a flex there
if and only if it has equation

y+oxy +dy? = ex® + fify + gy’ + hy?

for e # 0.

In homogeneous coordinates, we have shown that an irreducible cu-
bic is tangent to y = 0 at (0,0, 1) and has a flex there if and only if it has
equation

yz? + cxyz + dy’z = ex® + i’y + gxy® + hy®

for e # 0. Interchanging y and z with a transformation shows that an
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irreducible cubic is tangent to z = 0 at (0, 1,0) and has a flex there if and
only if the cubic has equation

Y’z + cxyz + dyz® = ex® + fx’z + gxz® + hz® (4)

for e # 0. Since z = 0 is the line at infinity and (0, 1,0) is the point at
infinity on vertical lines (as discussed after (8) of Section 2), setting z = 1
in (4) gives part (i) of the next result once we prove that (4) is irreducible
for e # 0.

Theorem 8.1
(i) A cubic is tangent to the line at infinity at the point at infinity on vertical
lines, has a flex there, and is irreducible if and only if it has equation

Yy 4cexy+dy=ex® + fx* +gx+h (5)

for real numbers e-h with e # 0.
(ii) A cubic C is irreducible and has a flex at a point P if and only if there is a
transformation that takes C to

Y =x*4+f*+gx+h (6)
for real numbers f, g, h and takes P to the point at infinity on vertical
lines.

Proof

We start by proving that we can transform (5) to (6) when ¢ # 0. Com-
pleting the square in y on the left-hand side of (5) gives

A 3 c?\ , cd az

The transformation

/ /

, c a
X =X, y:y—&—zx—kiz, z =2z,

takes (7) —or, more accurately, its homogenized form —to
yvi=e + i +gx+h (8)

for revised values of f, g, h. Because the value of e has not been changed,
it is still nonzero. Thus, the transformation

/ /
X, Yy =Y z =2z

takes (8) to (6), as desired, for revised values of f and g.
We claim next that the homogeneous polynomial

Y’z — x* — fx’z — gxz* — hz®

corresponding to (6) is irreducible. Because this polynomial does not
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have z as a factor, any factorization of it into homogeneous polynomials
of lower degree would give a factorization of

Yy -2 —ft —gx—h (9)

into nonconstant polynomials in x and y. However, no such factorization
exists: if it did, the absence of any term having y to the first power would
imply that the polynomial in (9) factors as

(y —a(x))(y +q(x))

for a polynomial g(x), but g(x)?> cannot have a leading term x* of odd
degree.

Transformations preserve irreducibility (as discussed before Theorem
4.5), equation (5) with ¢ # 0 can be transformed into (6) (by the first
paragraph of the proof), and (6) is irreducible (by the previous para-
graph). Thus, (5) is irreducible. Together with the discussion before the
theorem, this proves part (i).

Let C be a cubic that is irreducible and has a flex at a point P. There is
a transformation that takes P to the point at infinity on vertical lines and
takes a second point on the tangent at P to a second point at infinity (by
Theorem 3.4). This transforms C into (5) for e # 0 (by part (i)), which
can be transformed into (6) while fixing (0,1, 0) (by the first paragraph
of the proof). Conversely, any curve that can be transformed into (6) is
irreducible and has a flex because these properties are preserved by
transformations and (6) is the special case of (5) with ¢c=d =0 and

e=1. O

Let g(x) be a nonzero polynomial in one variable x, and let r be a real
number. By Theorem 4.3, x —r has the same exponent whenever we
factor g(x) as far as possible: this exponent is the intersection multiplicity
of y =q(x) and y = 0 at (r,0). We call x — r a repeated factor of q(x) when
this exponent is greater than 1. We use this terminology to determine
when the cubic in (6) has a singular point.

Theorem 8.2
Let C be the cubic y?> — q(x) for

qx) =x> + fx* + gx + h.

(i) Then C is nonsingular at all of its points in the Euclidean plane that do

not lie on the x-axis, and the tangents at these points are not vertical.

(ii) A point (r,0) on the x-axis in the Euclidean plane lies on C if and only
if x — v is a factor of q(x). If x — 7 is not a repeated factor of g(x), then C
is nonsingular at (r,0) and has a vertical tangent there. If x — v is a
repeated factor of q(x), then C is singular at (r,0).

(iii) The one point of C at infinity is the point at infinity on vertical lines, and
C is nonsingular there and tangent to the line at infinity.
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Proof
Let (a, b) be a point of the Euclidean plane on C. Substituting x = ' +a
and y =y + b in y? — q(x) gives

Y +Db)?*—q¥ +a). (10)
when this quantity is multiplied out, the constant term is zero (since
(a,b) satisfies y? — g(x) = 0) and y' has coefficient 2b. Let s be the co-
efficient of . The proof of Theorem 4.10 shows that C is nonsingular at

(a,b) if and only if s and 2b are not both zero and that, in this case, the
tangent at (a, b) is
s(x—a)+ 2b(y — b) = 0.
If b # 0, this shows that C is nonsingular at (a,b) and that its tangent
there is not vertical. This gives part (i).
Any point on the x-axis in the Euclidean plane has the form (7, 0) for a
real number 7. This point lies on C if and only if g(r) = 0, which happens

if and only if x — r is a factor of g(x) (by Theorem 1.10(ii)). In this case,
we can write

q(x) = (x — r)h(x) (11)
for a polynomial h(x). Setting a = r and b = 0 in (10) gives
y? —qx +7). (12)
Taking the expression for g(x) from (11) and substituting it in (12) gives
y? —¥n(xX +7).

When this quantity is multiplied out, x’ has coefficient —h(r) and y’ has
coefficient zero. Thus, C is nonsingular at (7, 0) and has a vertical tangent
there if h(r) # 0, and C is singular at (r,0) if h(r) = 0 (by the previous
paragraph). By Theorem 1.10(ii), h(r) = 0 if and only if x — r is a factor
of h(x), which happens if and only if x — r is a repeated factor of g(x)
(by (11)). This gives (ii).

The equation of C in homogeneous coordinates is

y’z = x° + fx’z + gxz* + hz.
Setting z = 0 in this equation gives x = 0. Thus, (0, 1, 0) is the only point
at infinity on C, and (iii) holds (by Theorem 8.1(i)). O
We recall from single variable calculus that every polynomial g(x) of
degree 3 in one variable has a root. In fact, we can write
qlx) =ex® + fx* +gx+h

for e # 0. Factoring out ex® shows that

q(x)—ex3<1+f+g+h>. (13)

ex ex? ex3
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As x goes to +o0 or —o0, so does x° (since the exponent 3 is odd), and the
quantity in parentheses in (13) approaches 1 (since the last three terms
inside the parentheses approach 0). Thus, g(x) takes both positive and
negative values. It follows that the graph of y = g(x) crosses the x-axis
at some point, and so g(x) has a root. For the same reason, every poly-
nomial of odd degree in one variable has a root in the real numbers.

We call a curve singular if it has a singular point in the sense of Defi-
nition 4.9. Other curves are nonsingular; these are the curves that have
tangents at all of their points.

Combining Theorems 8.1(ii) and 8.2 gives one of the two main results
of this section. It determines all nonsingular, irreducible cubics that have
a flex.

Theorem 8.3
A cubic is nonsingular and irreducible and has a flex if and only if it can be
transformed into

yr=x(x —1)(x —w) (14)
or

Y =x(x* +kx+1) (15)
forw>1and -2 < k < 2.

Figures 8.3 and 8.4 show cubics given by (14) and (15), respectively.
These figures illustrate several properties of the cubics. The cubics have
points (x, y) for the values of x that make the right-hand sides of the equa-
tions nonnegative. For (14), this occurs for 0 < x <1 or x > w. For (15),
this occurs for x > 0: since —2 < k < 2, the quadratic formula shows that
x? 4+ kx + 1 has no real roots and therefore takes positive values for all
real numbers x. The x intercepts of the cubics are the roots of the right-
hand sides of the equations: 0, 1, w for (14) and 0 for (15). These x inter-
cepts are the points where the cubics have vertical tangents, as Theorem
8.2 states. The cubics are symmetric across the x-axis because the equa-

Figure 8.3 Figure 8.4
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tions are unchanged by replacing y with —y. The y coordinates of points
on the cubics go to +oo as x goes to +o0.

Proof
Assume first that C is a nonsingular, irreducible cubic that has a flex. C
can be transformed into

Y =x+fi*+gx+h (16)

(by Theorem 8.1(ii)). The right-hand side of this equation is a poly-
nomial of degree 3 in x, and so it has a root r (by the discussion accom-
panying (13)). By Theorem 1.10(ii), we can rewrite (16) as

yr=x—-n)(x*+bx+c) (17)

for real numbers b and c. Either the quadratic x? 4 bx + ¢ in (17) is irre-
ducible or else we can write (17) as

Yy =x=nx—s)(x—1) (18)

for real numbers s and t.

Because C is nonsingular, no two of the numbers r, s, t in (18) are
equal (by Theorem 8.2). We label these numbers so that » < s < t. The
transformation

X =x—rz v =y 7 =z, (19)
takes (18) to
v =xx—u)(x—v), (20)

for u=s—r and v=t—r. The inequalities r < s <t imply that
0 < u < v. The substitution

x = ux, y=u'%, z=12,
arises from a transformation and takes (20) to
wy? = ux(ux — u)(ux — v).

Dividing both sides of this equation by u® gives (14) for w = v/u > 1.
If the quadratic x? 4+ bx + ¢ in (17) is irreducible, the transformation in
(19) takes (17) to

yr=x(x*+dx+e), (21)

where the quadratic x? + dx + ¢ is irreducible. The quadratic formula
shows that d? — 4e is negative, and so ¢ is positive. The substitutions

x = el/Zx/, y= 63/4y/, - Z/’
arise from a transformation and take (21) to

ePy? = e'Px(ex? + de'*x + e).
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Dividing this equation by e*? gives (15) for k = de '/?. Because the
quadratic x?> + kx + 1 is irreducible, the quadratic formula shows that
k> < 4,andso —2 < k < 2.

Conversely, since the right-hand sides of (14) and (15) have no re-
peated factors, any cubic C that can be transformed into one of these
equations is nonsingular (by Theorem 8.2 and the fact that transforma-
tions preserve singular points). Any such cubic C is irreducible and has
a flex (by Theorem 8.1(ii)). O

We prove in Section 12 that every nonsingular, irreducible cubic has a
flex. Thus, Theorem 8.3 actually determines all nonsingular, irreducible
cubics. Theorem 8.4, the second main result of this section, determines
all singular, irreducible cubics.

We could easily adapt the proof of Theorem 8.3 to show that a cubic C
is singular, irreducible, and has a flex if and only if it can be transformed
into one of the curves

yr=x3, yr=x*(x+1), yr=x*(x—1).

Instead, by doing somewhat more work, we avoid assuming that C has a
flex. That is, we prove that every singular, irreducible cubic C can be
transformed into one of the three curves above. This is the second
main result of this section. The fact that C has a singular point provides
enough information to simplify its equation, just as, in Theorem 8.3, the
fact that a cubic has a flex lets us simplify its equation.

Theorem 8.4
A cubic is singular and irreducible if and only if it can be transformed into
one of the forms

y' = (22)
yr=x4x+1), (23)
yr=x*x—1). (24)

Figures 8.5 to 8.7 show the cubics in (22)-(24), respectively, and illu-
strate several of their properties. The graphs have points for all values
of x that make the right-hand sides of the equations nonnegative: x > 0
for (22), x > —1 for (23), and x = 0 or x > 1 for (24). In particular, the or-
igin is an “isolated point” of the graph in Figure 8.7. Because x is a re-
peated factor of the right-hand sides of (22)-(24), the cubics are singular
at the origin (by Theorem 8.2). The x intercepts other than the origin are
the points where the graph has a vertical tangent (as in Theorem 8.2).
The cubics are symmetric across the x-axis; and the y-coordinates of
points on the graph go to +oo as x goes to +c0.
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Figure 8.5 Figure 8.6

Figure 8.7

Proof
The cubics in (22)-(24) are singular at the origin (by Theorem 8.2), since
x is a repeated factor of their right-hand sides. These cubics are irreduc-
ible (by Theorem 8.1(i)). Thus, any cubic that can be transformed into
one of (22)-(24) is singular and irreducible.

Conversely, let C be a singular, irreducible cubic. We can use Theorem
3.4 to transform the singular point to the origin. Then C has equation

ax* + bxy + cy* = dx* + ex’y + fyt + gy’ (25)

in the Euclidean plane (by Theorem 4.7 and Definition 4.9), where we
have collected terms of degree 2 on the left and degree 3 on the right.
First, we prove that we can transform (25) so that c =1, b =0, and a is
either 0, —1, or 1. Then we show that we can transform these curves into
(22)-(24), where the three values of a correspond to the three equations
(22)-(24).

If a, b, ¢ were all zero, then d would be nonzero (since the irreducible
cubic C does not have y as a factor). Then the polynomial

A’ +ex” + fx+g

would have a root r (as discussed before Theorem 8.3) and a factor x — r
(by Theorem 1.10(ii)). Then x — ry would be a factor of the right-hand
side of (25), and so it would be a factor of C (since we are assuming that
a, b, ¢ are all zero). This would contradict the fact that C is irreducible.
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Thus, the coefficients a, b, ¢ on the left-hand side of (25) are not all
zero. If a and ¢ are both zero, then b is nonzero, and the substitution

!

x=xX+y, y=y, z=12,

arises from a transformation and takes (25) to an equation of the same
form with a nonzero y? term. Thus, we can assume that a or ¢ is nonzero
in (25). By interchanging x and y with a transformation, if necessary, we
can assume that ¢ is nonzero.

As discussed after Theorem 3.6, we can divide (25) by ¢ and obtain

Y2+ bxy + ax® = dx® + ex’y + fxy® + gy®

for revised values of a, b, d — g. Completing the square in y on the left-
hand side of this equation gives

(y +10%) " +(a — 1p))x% = a3 + ex’y + fey? + . (26)
The transformation
¥ =z, Y =y+3bx, 7 =z,
takes (26) to
Y +ax’ =de’ + e’y + fiy’ + gy’ (27)

for revised values of a, d — g. In short, we have arranged to have b =0
and ¢ =1 in (25).

Suppose first that a = 0. Because the cubic in (27) is irreducible, it
does not have y as a factor, and so d is nonzero. Then

X =dBx, Y=y =3z
is a transformation that takes (27) to
¥y =2+ ex’y + fry’ + gy’ (28)
for revised values of e — g. The substitutions

— € ) o
X—X—gy, y=vYyY, z2=2z,

eliminate the ex?y term from (28), since the coefficient of x%y in
(x — (e/3)y)® is —e. Thus, the transformation

/ /

, e
X:X+§y> y:ya Z =z,
takes (28) to
¥y =2+ fy’ + gy’
for revised values of f and g. The homogenization of this equation is

vz=x"+ fxy’ + gy,
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which we can rewrite as

Yz —fx—gy) = (29)
The transformation

/

X=x Y=y  d=z-frx—gy,

takes (29) to y%z = x3, which is the homogenization of (22).
Henceforth we can assume that a is nonzero in (27). The transforma-
tion
X = |a|1/2x, y/:y’ Z/ZZ,

leaves x? with coefficient +1. Thus, we can assume that a = +1 in (27).
Suppose first that a = —1. Then (27) becomes

(y* =%z =de’ + ex’y + fry’ + gy’ (30)
in homogeneous coordinates. The equations
X:%X/_%yla y:%X/_F%y,) Z:Z/;

arise from a transformation because they can be solved for ', i/, z’' as
follows:

¥ =x+y, Yy =—-x+y, 7 =z
This transformation takes (30) to
xyz = dx® + ex’y + fxy® + gy®
for revised values of d — g. We can rewrite this equation as
xy(z —ex — fy) = dx’ + g,

and so the transformation

X=x Y=y d=z-ex—fy,

gives
xyz = dx* + gy’
Because C is irreducible, d and g are both nonzero. Then
X = d'3x, y =o'y, 2 =d Vg1,
is a transformation that gives the equation
xy = x>+ y°. (31)
In particular, the cubic
Y2 — =3 (32)

is irreducible (by Theorem 8.1(i)), and it has the form of (27) with
a = —1. Accordingly, the previous paragraph shows that there is a trans-
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formation that takes (32) to (31). Reversing this gives a transformation
that takes (31) to (32). Thus, by the previous paragraph, any irreducible
cubic given by (27) with a = —1 can be transformed first into (31) and
then into (32), which can be rewritten as (23).

Finally, suppose that a = 1 in (27). We can eliminate the ex?y and the
fxy? terms by rewriting (27) as

(W +2%)(z~fr—ey) = (d— )’ + (g — )y’
in homogeneous coordinates. Then the transformation
¥ =z, ¥ =y, 7 =z—fx—ey,
gives an equation of the form
(v +x%)z = jx* + ky® (33)
for real numbers j and k.

If k=0, we must have j # 0, since C is irreducible. The transforma-
tion

¥="x oy =iy, =
takes (33) with k=0 to
(v + )z =
which is the homogenization of (24). Thus, we can assume that k # 0 in
(33).
Consider the substitutions
x=qgx +y, y=-+qy, z=27 +sx +ty, (34)

for real numbers g, s, t to be determined. If we multiply the second
equation by g and add it to the first, we obtain

x+qy=(q*"+1y. (35)

Since g% 4 1 # 0 for any real number g, we can solve (35) for y' in terms
of x and y. If we substitute the result into the second equation in (34), we
can express ¥ in terms of x and y. We can then use the third equation
in (34) to express z' in terms of x, y, z by substituting the expressions
we have for ¥’ and y’. Thus, the substitutions in (34) arise from a trans-
formation.

The substitutions in (34) transform y? + x? into

(=% +qy)? + (g +y)? = (@* + D" +x").
Accordingly, these substitutions transform (33) into
(@* + D(y* +2°)(z + sy +ty) =jlax +y)° + k(—x+qy)’.  (36)
The x?y terms on both sides of this equation will cancel if

(g% 4 1)t = 3jq* + 3kg. (37)
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The xy? terms in (36) will cancel if

(g* +1)s = 3jq — 3kq*. (38)
The y? terms in (36) will cancel if
(@* + 1)t =j+kq. (39)
Combining this equation with (37) gives
3jq* 4 3kq =j + kq°. (40)

Since k # 0 (by the paragraph after (33)), equation (40) is a polynomial
of degree 3 in g. We can choose g to satisfy this equation (as discussed
before Theorem 8.3). Since g? + 1 # 0, we can choose s and t so that
(37) and (38) hold. Equation (39) follows from (37) and (40). In short,
we have chosen g, s, and t so that the x%y, xy?, and y* terms in (36) all
cancel. Thus, if we multiply out (36) and collect like terms, we obtain

(@*+D(y* +xH)z = ux® (41)

for a real number u. Because > + 1 # 0, equation (41) has the form of
(33) with k = 0. Thus, we can transform (41) into (24), by the paragraph
after (33). O

Theorems 8.4 and 8.1(ii) imply that every singular, irreducible cubic has
a flex because (22)-(24) are special cases of (6).

The cubics in (14) and (15) and (22)-(24) have flexes at the point
(0,1,0) at infinity on vertical lines (by Theorem 8.1(i)). To illustrate
this, consider the homogenization y?z =x3 of (22). Interchanging y
and z gives the curve z%y = x° and takes the point (0,1,0) to (0,0,1). In
Euclidean terms, we want to verify that y = x> has a flex at the origin
(0,0), and we did so in the discussion accompanying Figure 8.2. In effect,
the inflection point at the origin in Figure 8.2 shows how the two “ends”
of the cubic in (22) and Figure 8.5 form a flex at infinity.

Theorems 8.3 and 8.4 characterize all irreducible cubics that have a
flex or a singular point. We will prove in Section 12 that every non-
singular, irreducible cubic has a flex, and so Theorems 8.3 and 8.4
actually determine all irreducible cubics. Every nonsingular, irreducible
cubic can be transformed into (14) for w > 1 or (15) for —2 < k < 2.
Every singular, irreducible cubic can be transformed into one of the
three equations (22)-(24).

Exercises

8.1. Let g(x) be a polynomial in one variable, let g’(x) be its derivative, and let r
be a real number. Prove that x — r is a repeated factor of g(x) if and only if

q(r) =0=4q'(r).
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8.2.

8.3.

8.4.

8.5.

8.6.

8.7.

8.8.

8.9.

Find a polynomial g(x) such that the curve y = g(x) has a flex but not an
inflection point at the origin.

Let —2 < k< 2, and consider y = x'/*(x? + kx +1)'/2. Use single-variable
calculus to prove that there are either two, one, or or zero values of x
such that dy/dx = 0, and determine what values k in (—2, 2) give each num-
ber. (The given function is the top half of the curve in (15). Figures 8.4, 8.8,
and 8.9 sketch (15) in the three cases of this exercise.)

Figure 8.8 Figure 8.9

Sketch the graph of y = x(x 4 1)/, analyzing it in terms of dy/dx and
d*y/dx? as in single-variable calculus. Deduce that Figure 8.6 is the graph
of (23).

Let C be a nonsingular, irreducible cubic. Prove that any flex of C lies on
the tangents of either one or three other points of C. Moreover, if a flex
lies on the tangents of three other points of C, prove that the three points
are collinear. (See Theorems 8.1-8.3.)

Let P and Q be two flexes of an irreducible cubic C. Prove that line PQ
intersects C at a third point R, which is a flex of C other than P and Q.

(Hint: See Theorems 8.1 and 8.2 and take advantage of the symmetry of
(6) across the x-axis. Why does no flex of (6) lie on the x-axis?)

Let P and Q be two flexes of an irreducible cubic. Prove that there is a
transformation that interchanges P and Q and that does not change the
equation of the cubic. (See Exercise 8.6 and its Hint.)

Conclude from Exercise 8.7 and Theorems 8.1-8.3 that no cubic can be
transformed into both (14) for w > 1 and (15) for —2 < k < 2.

Consider a transformation of the projective plane. Let f, g, h be real num-

bers. Prove that the following conditions are equivalent, i.e., that one holds

if and only if the other does.

(i) The transformation fixes (0,1,0) and maps y? = x*+ fx2 +gx+h to
y? = x3 4 gx? + vx + s for real numbers g, 7, s.

(ii) There are real numbers ¢ and e # 0 such that the transformation maps
any point (x,y,z) to the point (¥, y', z') given by the equations

¥ =x+cz, y =ey, 7 =z/et (42)
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8.10. (a) Let kbe a number such that —2 < k < 2. Consider a transformation that

8.12.

fixes (0, 1,0) and maps (15) to
Y =x(x* +jx+1)

for a number j such that —2 < j < 2. Conclude from Exercise 8.9 that,
for e =1 or e = —1, the transformation maps any point (x,y,z) to the
point (¥',y,z') given by the equations ¥ =%, y =ey, and 7z’ =z
Deduce that j = k.

(b) If a cubic can be transformed into (15) for —2 < k < 2, conclude from

(a), Exercise 8.7, and Theorem 8.2 that the value of k is unique.

. (a) Letx; < x; be real numbers. Prove that the transformation in (42) maps

(x1,0,1) and (x,0, 1) to points (x3,0,1) and (x4, 0, 1) for real numbers x3
and x4 such that x3 < x4.

(b) Let w be a real number greater than 1. Consider a transformation that

fixes (0,1, 0) and maps (14) to

yr=x(x—1)(x—v)

for a real number v > 1. Conclude from (a), Theorem 8.2, and Exercise
8.9 that, for e =1 or e = —1, the transformation maps any point (x, y, z)
to the point (¥, y’, z’) given by the equations ¥ = x, y’ = ey, and 2z’ = z.
Deduce that v = w.

(c) If a cubic can be transformed into (14) for w > 1, conclude from (b) and

Exercise 8.7 that the value of w is uniquely determined.

(Together with Theorem 8.3 and Exercises 8.8 and 8.10, this exer-
cise proves that every nonsingular, irreducible cubic that has a flex can
be transformed into exactly one of the cubics in (14) and (15) for w > 1
and —2 < k < 2. In fact, this holds for all nonsingular, irreducible cu-
bics because all such cubics have flexes, as we prove in Section 12.)

A cubic C and a point P are given in each part of this exercise. First prove

that P is a flex of C by finding the tangent at P and proving that it intersects

C three times at P. Then transform C into a cubic C’ that has the form of (5)

by taking the image of C under a transformation that maps P to (0, 1,0) and

maps the tangent at P to the z-axis. Finally, transform C’ into (14) for w > 1
r (15) for —2 < k < 2. (It follows from Theorem 8.3 that C is nonsingular

and irreducible.)

a) y® = x% + 3, the origin.

b

) y® = 3x3 + 4x2 + x, the origin.
y? = x’y + 4, the point at infinity on horizontal lines.

d) x% = xy? + 2y, the origin.

)
) y*x +y? = x* — x, the point at infinity on vertical lines.
) %2y + xy? = 1, the point at infinity on vertical lines.

8.13. Graph the cubics in Exercise 8.12.

8.14. (a) For each of the cubics in (22)-(24), determine how many lines through

the origin intersect the cubic three times there. (Note that these are the
lines that best approximate the cubic near the origin in Figures 8.5-
8.7.)
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8.15.

8.16.

8.17.

8.18.

8.19.

(b) Conclude from part (a) and Theorems 8.2 and 8.4 that every singular,
irreducible cubic can be transformed into exactly one of the equations
(22)-(24).

A cubic C is given in each part of this exercise. Graph C, and prove that it is
irreducible. Prove that C is singular at the point Q at infinity on vertical
lines. Determine how many lines through Q intersect C three times there.
Use this information, Exercise 8.14, and Theorem 8.4 to determine which
of the equations (22)-(24) C can be transformed into:

(a) ¥y =2x%+1.
(b) ¥’y+y==x
(c) X¥’y=x+y.
(d) y=x—x5
(e) xy =%+ 1.
(f) X2y +4y =x*—1.
(g) ¥’y =x*—1.

In each part of Exercise 8.15, find a sequence of transformations that
maps the given cubic to one of the equations (22)-(24). (See the proof of
Theorem 8.4.)

Let L = 0 be the equation in homogeneous coordinates of a line other than
the line at infinity, and let P be the point at infinity on L. Prove that a cubic
has a flex at P and is tangent to L at P if and only if the cubic has equation
LG = uz® where u is a real number and G is a homogeneous polynomial of
degree 2 such that the curve G = 0 does not contain P.

(Hint: One possible approach is to show that there is a transformation
that maps P to the origin and maps the lines L = 0 and z = 0 to the lines
y =0 and x = 0, respectively.)

(a) Prove that the lines y = —1, y = 3/2x+ 2, and y = —3'/2x + 2 are the
sides of an equilateral triangle centered at the origin.

(b) Use Exercise 8.17 and Theorem 1.9 to deduce that a cubic C is tangent
to the lines in part (a) at their points at infinity and has these points as
flexes if and only if C has equation

(Y+1Dy—3"x=2)(y+3%x-2)=u (43)

for a real number u. (The cubic in (43) has the lines in part (a) as
asymptotes. Figures 8.10 and 8.11 show (43) for u = —10 and u = 2.)

(c) Prove that the cubic in (43) maps to itself when the Euclidean plane is
rotated 120° about the origin. (Thus, the graph has threefold rotational
symmetry about the origin.)

(d) Prove that a cubic has three collinear flexes at which the tangents are
not concurrent if and only if it can be transformed into (43) for some
value of u.

(a) Consider the lines through the origin parallel to the lines in Exercise
8.18(a). Prove that a cubic C is tangent to these lines at the points at
infinity they contain and has these points as flexes if and only if C has
the equation

yly =320y +3"%) =0
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Figure 8.10 Figure 8.11

for a real number v. (See Exercise 8.17 and Theorem 1.9. Setting v = 1
gives

yly— 30y +3"%) =1, (44)

which is shown in Figure 8.12. The tangents at points at infinity are
asymptotes.)

If a cubic C is irreducible and has three collinear flexes at which the
tangents are concurrent, prove that C can be transformed into the
cubic in (44).

Prove that (44) maps to itself when the Euclidean plane is rotated 120°
about the origin.

(Exercise 12.8 shows that every nonsingular, irreducible cubic has
three collinear flexes. Thus, Exercises 8.18 and 8.19 imply that every
nonsingular, irreducible cubic can be transformed so that it has threefold
symmetry. Exercises 8.31 and 12.10 provide additional information
about these cubics.)

Figure 8.12

For any real number u, prove that there is a transformation that takes
(43) to

xyz =plx+y+2)° (45)
for p = u/108. (Setting z = 1 in (45) gives
(x4+y+1)°=wxy (46)
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8.21.

— D

Figure 8.13 Figure 8.14

for w=1/p when p # 0. Figures 8.13 and 8.14 show (46) for w = —8
and w = 40.)

(b) Prove that a cubic C has flexes at (0, —1,1), (—1,0,1), (—1,1,0) and has
tangents x = 0, y = 0, and z = 0 there if and only if C is given by (45)
for a real number p. (See part (a) and Exercise 8.18(b).)

(c) If a transformation maps (45) to

xyz = qx +y+2)°

for real numbers p and g and fixes (0,—1,1), (—1,0,1), and (—1,1,0),
prove that p = q and the transformation fixes every point.

For any real number ¢, prove that

Byt 428 =tz (47)

has flexes at (0,—1,1), (—1,0,1), (—1,1,0) at which the tangents are
tx+3y+3z=0, 3x+ty+3z=0, and 3x+ 3y +tz=0. (Setting z=1 in
(47) gives

Pyl = (48)
Figures 8.15 and 8.16 show (48) for t = —1 and t = 8.)

Figure 8.15 Figure 8.16
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8.22. Comparing Exercises 8.20 and 8.21 suggests considering the equations
¥ =tx+ 3y + 3z,
Y =3x+ty+ 3z,
7z =3x+3y+tz

Prove that these equations give a transformation if and only if t is not 3 or

—6.
8.23. If t is not 3 or —6, prove that the transformation in Exercise 8.22 maps (47)
0 (45) for
t24+3t+9
- ;—t (49)
(t+6)

8.24. Taking the reciprocal of the right-hand side of (49) gives the expression

(t+6)°

w=——-—-—. 50
t2+3t+9 (50)

This expression defines w as a function of t. Prove that this function is
continuous and increasing for all real numbers t. Prove that the function
takes arbitrarily large positive and arbitrarily negative values. Why does it
follow that every real number w arises from exactly one real number ¢ via
equation (50)?

8.25. If t = —6, prove that the cubic in Exercise 8.21 has concurrent tangents at
its flexes (0, —1,1), (—1,0,1), and (—1,1,0). (Figure 8.17 shows the cubic in
(48) for t = —6.)

N

Figure 8.17

8.26. (a) Prove that a cubic C has flexes at (1,0, 0) and (0, 1, 0) with tangent lines
intersecting at (0,0, 1) if and only if C has the equation

xy(rx + sy +mz) = nz® (51)

for real numbers r # 0, s # 0, m, and n. (See Exercise 8.17.)
(b) Use part (a), Exercise 8.17, and Theorem 3.4 to do Exercise 8.6.
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8.27.

8.28.

8.29.
8.30.

8.31.
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N

O
1 <

Figure 8.18 Figure 8.19

(a) If the cubic in (51) is irreducible, prove that it can be transformed into
Xy +xy? + 22 = mayz (52)
for a real number m. (Setting z = 1 in (52) gives
Xy +xy? 4+ 1 = mxy.

Figures 8.18 and 8.19 show this cubic for m = —1 and m = 4.)
(b) Use part (a) and Exercise 8.26(a) to do Exercise 8.7.

If a transformation maps (52) to
Xy +xy? + 22 = kwyz

for a real number k and fixes (1,0,0) and (0, 1,0), prove that k = m. (See
Exercise 8.26(a).)

Prove that no irreducible curve of degree 2 has a flex.

Let L = 0 be the tangent line to a cubic C = 0 at a flex P. If C is reducible,
prove that L is a factor of C.

(Hint: One possible approach is to combine Theorem 8.1(i) with the
discussion after (3). Another approach is to deduce from Theorem 3.6 that
P is a flex of an irreducible factor of C and to use Exercise 8.29.)

Use Exercise 8.30 and the exercises discussing the following cubics to prove
that these cubics are irreducible.
a) Equation (43) for u # 0.
b) Equation (44).
c) Equation (45) for p # 0.
)
)

- =

d
e

Equation (47) for t # 3.

(
(
(
(
(e) Equation (52

- =
e —

for all real numbers m.

§9. Addition on Cubics

We interrupt our work classifying cubics to devote this section to one of
their most important properties. We give a geometric construction for
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adding the points of a nonsingular, irreducible cubic C with respect to
a flex O. It is easy to see that addition is commutative, O is an identity
element for addition, and every point of C has an additive inverse. The
key property to be proved is the associative law of addition, which fol-
lows from Theorem 6.4 on “peeling off a line.”

An elliptic curve is a nonsingular cubic of the form

yr=x4+ax*+bx+c (1)

for rational numbers a, b, c. We describe addition algebraically for ellip-
tic curves. A major open question in number theory is to determine all
pairs of rational numbers x and y that satisfy (1). Work on this question
is based on addition of points of C.

Elliptic curves are also important in number theory because of their
role in the 1995 proof of Fermat’s Last Theorem. This theorem, originally
conjectured by Pierre de Fermat in 1665, states that the equation

xn+yn:Zn

has no solution in nonzero integers x, y, z when n is an integer greater
than or equal to 3. In fact, any such solution would imply that there are
nonzero integers a, b, ¢ and a prime p > 5 such that

al +b? =c*,

where a is even and b is an integer 3 more than a multiple of 4. G. Frey
observed in 1985 that the corresponding elliptic curve

y> =x(x+a’)(x — ")

would have very unusual properties. Andrew Wiles proved in 1995 that
no elliptic curve can have these properties, and therefore Fermat's Last
Theorem holds.

The definition of addition of points on a nonsingular, irreducible
cubic C is based on the intersections of lines with C. We start by analyz-
ing these intersections.

Theorem 9.1
Let 1 be a line that intersects an irveducible cubic C at least twice, counting
multiplicities. Then [ intersects C exactly three times, counting multiplicities.

Proof

There is a transformation that maps two points of I to two points on the
x-axis y = 0 (by Theorem 3.4). This transformation maps [ to y = 0, maps
C to another irreducible cubic, and preserves intersection multiplicities
(by the remarks after the proofs of Theorems 3.4 and 4.4 and by Property
3.5). By replacing [ and C with their images under this transformation,
we can assume that [ is the line y = 0.
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C does not have y as a factor because it is irreducible. By Theorem 4.4,
the number of times, counting multiplicities, that y =0 intersects C
in the projective plane is the degree 3 of C minus the degree of a poly-
nomial r(x) that has no real roots. Because y = 0 intersects C at least
twice, r(x) has degree at most 1. On the other hand, every polynomial
in one variable of degree 1 has a root: sx + t has root —t/s for any real
numbers s # 0 and t. Thus, r(x) has degree 0; that is, it is a constant.
Then y = 0 intersects C three times. O

As noted before Theorem 3.4, we call points distinct when no two of
them are equal. We say that the intersections of curves F and G are listed
by multiplicity if each point appears in the list as many times as F and G
intersect there. For example, if the list is P, P, P, Q, R, R, S for distinct
points P-8, then F and G intersect three times at P, twice at R, and
once at each of the points Q and 8.

Let C be a nonsingular, irreducible cubic. We define line PQ for any
points P and Q on C, as follows. If P # Q, line PQ is the unique line
through P and Q (by Theorem 2.2), as always. If P = Q, line PP is the
tangent at P (as discussed before (9) of Section 6).

If P # Q, then line PQ intersects C at least once at P and at least once
at Q. If P = Q, then line PP = tan P intersects C at least twice at P (by
Definition 4.9). Thus, for any points P and Q of C, the intersections of
line PQ and C, listed by multiplicity, include P and Q. Then line PQ in-
tersects C exactly three times, counting multiplicities (by Theorem 9.1).
The third intersection of PQ and C is the point R such that line PQ inter-
sects C at P, Q, R, listed by multiplicity.

Figure 9.1-9.5 illustrate cases where R is the third intersection of
line PQ. We have three distinct points P, Q, R in Figure 9.1, P=Q # R
in Figure 9.2, P =R # Q in Figure 9.3, Q = R # P in Figure 9.4, and
P=Q =R in Figure 9.5. We use intersection multiplicities to handle
these cases simultaneously.

Figures 9.1-9.5 suggest that the condition that R is the third inter-
section of line PQ is symmetric in the points P, Q, R. The next theorem
shows that this is so.

Figure 9.1 Figure 9.2
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Figure 9.3 Figure 9.4 Figure 9.5

Theorem 9.2
Let C be a nonsingular, irreducible cubic. Let P, Q, R be points on C that are
not necessarily distinct (Figures 9.1-9.5).

(i) R is the third intersection of line PQ if and only if there is a line | that
intersects C at P, Q, R, listed by multiplicity.

(ii) If R is the third intersection of line PQ, then Q is the third intersection of
line PR, and R is the third intersection of line PQ.

Proof
(i) If R is the third intersection of line PQ, then PQ is a line that inter-
sects C at P, Q, R, listed by multiplicity. Conversely, let [ be a line that
intersects C at P, Q, R, listed by multiplicity. If P # Q, then I is the
unique line PQ through P and Q (by Theorem 2.2). If P = Q, then [ inter-
sects C at least twice at P, and [ is tan P = PP (by Definition 4.9). In short,
lis line PQ whether or not P and Q are distinct. Since [ intersects C at P,
Q, R, counting multiplicities, R is the third intersection of line PQ = 1.
(ii) The condition that a line [ intersects C at P, Q, R, counting multi-
plicities, is symmetric in the points P, Q, R. Thus, part (ii) follows from
part (). O

We can now define addition on cubics.

Definition 9.3

Let C be a nonsingular, irreducible cubic with a flex O. Let P and Q be
points of C that are not necessarily distinct. Then P + Q is the point of C
determined as follows: if S is the third intersection of line PQ, then P + Q
is the third intersection of line OS (Figure 9.6). O

Definition 9.3 actually applies to all nonsingular, irreducible cubics
because all such cubics have flexes, as we show in Section 12. We assume
in the rest of this section that C is a nonsingular, irreducible cubic with flex O,
and that addition on C is given by Definition 9.3. Figure 9.6 depicts O as an
inflection point because of the requirement that O be a flex.
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Figure 9.6 Figure 9.7 Figure 9.8

Definition 9.3 includes a number of special cases where the points P,
Q, S, O, P+ Q are not all distinct. In particular, taking P = Q in Defini-
tion 9.3 shows that P + P is the third intersection of line OS, where S is
the third intersection of line PP = tan P (Figure 9.7).

Because line PQ is unchanged if we switch P and Q, Definition 9.3 is
symmetric in P and Q. Thus, we have the commutative law

P+Q=Q+P (2)

for any points P and Q on C. In other words, the order in which we add
points does not matter.

For any point P on C, let V be the third intersection of line PO (Figure
9.8). Taking Q = O in Definition 9.3 gives S = V. Then P + O is the third
intersection of line OS = OV (by Definition 9.3), and that point is P (by
Theorem 9.2(ii) and the choice of V as the third intersection of line PO).
In short, we have

P+0=P (3)

for any point P of C. We call O the identity element for addition as a short-
hand way to say that (3) holds for every point P of C. Equation (3) shows
that adding the identity element to any point of C gives the same point
back. Definition 9.3 assigns a special role to the point O precisely to
make O the identity element.

In the notation of the previous paragraph, O is the third point of inter-
section of line PV (by Theorem 9.2(ii), since V is the third intersection of
line PO). Thus, taking Q = V in Definition 9.3 gives S = O (Figure 9.9).
Then P + V is the third intersection of line OS = OO = tan O (by Defini-
tion 9.3), and that point is O (since tan O intersects C three times at O
because O is a flex). If we write V as —P, we have shown the following:
for any point P of C, there is a point —P such that

P+ (—P) =o0. (4)

We call —P the additive inverse of P; it is a point that gives the identity
element when it is added to P. We have shown that the inverse of any
point P of C is the third intersection of line PO. Definition 9.3 specifies
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Figure 9.9

that O must be a flex precisely to permit this simple construction of
inverses.
The key property of addition is the associative law

(P+Q)+R=P+(Q+R)

for any points P, Q, R of C. The proof depends on the following result,
which relates the number of times that two curves intersect at a point
to the number of times they each intersect a line there:

Theorem 9.4
Let G=0 and H = 0 be curves, and let L = 0 be a line such that L is not a
factor of G. Let A be a point at which G is nonsingular. If

IA<L5 G) > IA(L7H>3 (5>

then we have
I4(G,H) = I4(L, H). (6)
We can paraphrase as follows the fact that (5) implies (6): if L ap-

proaches G more closely than H at A, then L and G approach H with the
same degree of closeness. Figure 9.10 illustrates this when I,(L,H) = 1.

Proof

Because I,(L,H) > 0, inequality (5) implies that I,(L,G) > 1. Assume
first that I,(L,G) = 1. Then I4(L,H) = 0 (by inequality (5)), and it fol-

Figure 9.10
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lows that A lies on L but not H (by Theorem 3.6(iii)). This implies that
I,(G,H) = 0 (by Theorem 3.6(iii)), and so (6) holds in this case.

Thus, we can assume that I, (L, G) > 2. Then G is tangent to L at A (by
Definition 4.9, since G is nonsingular at A).

There is a transformation that maps A to the origin O and maps a
second point of L to a second point on the x-axis (by Theorem 3.4). Be-
cause transformations preserve intersection multiplicities and factoriza-
tions (by Property 3.5 and the discussion before Theorem 4.5), we can
assume that A is the origin O and that L is the x-axis y = 0. By Property
3.1, we can replace G and H with their restrictions g(x,y) = G(x,y, 1) and
h(x,y) = H(x,y,1) to the Euclidean plane in computing intersection
multiplicities at the origin.

The assumption that L is not a factor of G means that y is not a factor
of g. If " is the smallest power of x appearing in the terms of g that do
not have y as a factor, we can write

g(xy) = yulx,y) + x"p(x) (7)

for polynomials u and p such that p(0) # 0: yu(x,y) is the sum of the
terms of g(x,y) in which y appears, and x"p(x) is the sum of the other
terms. Setting y = 0 gives

g(x,0) = x"p(x),

and so we have

Io(y,g) =7 (8)

(by Theorem 4.2). Moreover, because g is tangent to y = 0 at the origin,
the coefficient of y in g is nonzero (by Theorem 4.7 and Definition 4.9).
Thus, u(x,y) has nonzero constant term, and so

u(0,0) # 0. (9)

Inequality (5) shows that Ip(y, h) is finite, and so y is not a factor of h
(by Theorem 1.7). It follows, as in the previous paragraph, that we can
write

h(x,y) = yo(x,y) +°q(x) (10)
for polynomials v and g, where
q(0) #0 (11)
and
Io(y, h) = s. (12)

Equations (7) and (10) show that
Io(g, h) = Io(yu + x'p,yv + x°q).
We can multiply the last polynomial by u (by inequality (9) and Theorem
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1.8). This gives
Io(yu + x"p, yuv + x°qu).

We can cancel yuv by subtracting v times the first polynomial from the
second (by Property 1.5). This leaves

Io(yu + x"p, —x"pv + x°qu). (13)
We have
r>s (14)

(by inequality (5) and equations (8) and (12)), and so we can factor x° out
of the second polynomial in (13). This gives

Io(yu + x'p, x°w) (15)
for
w(x,y) = =X "px)v(x,y) +qX)ux,y).

Setting x = 0 and y = 0 in w(x,y) makes ¥ 5 zero (by inequality (14))
and g(x)u(x,y) nonzero (by inequalities (9) and (11)), and so w(0,0) is
nonzero. Thus, we can drop w(x,y) from (15) (by Theorem 1.8) and
leave

Io(yu +x"p,x%).
This quantity equals
slo(yu + x'p, %) (16)

(by Property 1.6 if s > 0 and by Properties 1.1 and 1.3 if s = 0). Since
r > 0 (by inequality (14)), x"p is a multiple of x, and so it can be omitted
from (16) (by Properties 1.2 and 1.5). Thus, the quantity in (16) equals

slo(yu, x) = slo(x,yu) (by Property 1.2)
=slp(x,y) (by inequality (9) and Theorem 1.8)
=5 (by Property 1.4).
Together with (12), this establishes (6). O

In Theorem 9.4, the condition that
Iu(L,G) > I4(L, H) (17)
implies that I,(G, H) = I4(L, H), and so we have
I,(L,G) > I.(G, H). (18)

Thus, if inequality (18) does not hold, neither does inequality (17). This
gives the following result:
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Theorem 9.5
Let G =0 and H = 0 be curves, and let L = 0 be a line such that L is not a
factor of G. Let A be a point at which G is nonsingular. If

IA<G: H) = IA(L5 G):
then we have

IA<L;H) ZIA<L: G> [

The next result is the geometric form of the associative law of addition
on cubics, as the proof of Theorem 9.7 will show. The key to proving the
next result is Theorem 6.4 on “peeling off a line.” Theorem 9.5 equips us
to handle multiple intersections smoothly.

Theorem 9.6
Let C be nonsingular, irreducible cubic. Let E, F, G, H be points of C that
are not necessarily distinct. Let W and X be the third intersections of lines
EF and GH, and let Y and Z be the third intersections of lines EG and FH.
Then the third intersections of the lines WX and YZ are the same point
(Figure 9.11).

Proof
Let T be the third intersection of line YZ (Figure 9.12). It suffices to
prove that there is a line that intersects C at the points W, X, T, listed
by multiplicity; if so, T is the third intersection of line WX, as desired
(by Theorem 9.2(i)).

The lines

EF, GH, YZ (19)

are given by homogeneous polynomials of degree 1. The product of
these polynomials is a cubic D, which consists of the three heavy lines
in Figure 9.12. Because C intersects line EF at E, F, W, line GH at
G, H, X, and line YZ at Y, Z, T, listing points by multiplicity, C and D

Figure 9.11
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Figure 9.12

intersect at the nine points
E3F7G7H5 W9X9 Y7Z3T7 (20)

listed by multiplicity (by Theorem 3.6(v)).

Assume first that line EG does not equal any of the lines in (19). Then
EG intersects each of these lines exactly once (by Theorem 4.1). It is
clear that EG intersects line EF at E, line GH at G, and line YZ at Y.
Thus, line EG intersects the cubic D at E, G, Y, listed by multiplicity
(by Theorem 3.6(v)). EG also intersects the cubic C at E, G, Y, listed by
multiplicity. Thus, by Theorem 6.4 on ‘“peeling off a line,” there is a
curve K = 0 of degree 2 that intersects C in the six points

F,H,W,X,Z,T, (21)

listed by multiplicity, that are left after removing E, G, Y from the list of
points in (20).

On the other hand, suppose that EG is one of the lines in (19). The
other two lines are given by homogeneous polynomials of degree 1, and
we let K be the product of these two polynomials. Then K = 0 is again
a curve of degree 2 that intersects C in the six points in (21), listed by
multiplicity (by Theorem 3.6(v)).

The last two paragraphs show that there is always a curve K = 0 of
degree 2 that intersects C at the six points in (21), listed by multiplicity.
Let L = 0 be line FH. L intersects C at the points F, H, Z, listed by multi-
plicity, and these are among the points in (21) where K intersects C,
listed by multiplicity. Thus, the relation

I4(C,K) 2 I4(L, C) (22)

holds for every point A of C. By assumption, C is nonsingular, and, be-
cause it is irreducible, it does not have L as a factor. Then Theorem 9.5
and inequality (22) imply that

Ii(L,K) = I4(L, C) (23)

for every point A of C. Because L intersects C three times, counting
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multiplicities, inequality (25) shows that L intersects K at least three
times, counting multiplicities. Since K has degree 2, it follows that L is a
factor of K, by Theorem 4.5.

We write K = LM for a homogeneous polynomial M. Since K has
degree 2, M has degree 1 and so M = 0 is a line. By Theorem 3.6(v), the
list of points in (21) where K intersects C consists of the points F, H, Z
where L intersects C together with the points where M intersects C.
Thus, M intersects C at the points W, X, T, listed by multiplicity. We
are done by the first paragraph of the proof. O

If we take the point H in the previous result to be the flex O used to
define addition on the cubic C, we obtain the associative law.

Theorem 9.7
Let C be a nonsingular, irreducible cubic that has a flex O. If P, Q, R are
points of C that are not necessarily distinct, then we have

(P+Q)+R=P+(Q+R). (24)

Proof

Definition 9.3 determines each side of (24) geometrically. If S is the third
intersection of line PQ, then P+ Q is the third intersection of line OS
(Figure 9.13). If T is the third intersection of line (P+ Q)R, then
(P+ Q) + R is the third intersection of line OT.

Likewise, if U is the third intersection of line QR, then Q + R is the
third intersection of line OU (Figure 9.14). If V is the third intersection
of line P(Q + R), then P + (Q + R) is the third intersection of line OV.

Because the quantities (P+ Q) + R and P+ (Q + R) in (24) are the
third intersections of the lines OT and OV, respectively, (24) is equiva-
lent to the equation T = V. Accordingly, it suffices to prove that the third
intersections of the lines (P + Q)R and P(Q + R) are the same point.

We apply Theorem 9.6, taking E, F, G, H to be the points Q, S, U, O,
respectively (Figure 9.15). By Theorem 9.2(ii), the third intersections of

9
P
T
s R
o P+Q
(P+Q)+R

Figure 9.13
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Figure 9.15

lines QS and UO are P and Q + R, and so the points W and X in Theorem
9.6 are now P and Q + R. The third intersections of lines QU and SO
are R and P+ Q (by Theorem 9.2(ii)), and so the points Y and Z in
Theorem 9.6 are now R and P+ Q. Then Theorem 9.6 shows that the
third intersections of the lines P(Q +R) and (P + Q)R are the same
point, as desired. O

Let C be a nonsingular, irreducible cubic with a flex O. Readers
familiar with abstract algebra will recognize that we have made C an
abelian group. This means that C is a set with an operation on its ele-
ments called addition such that the sum of two elements of C is an
element of C, the commutative and associative laws hold, there is an
identity element for addition, and every element of C has an additive
inverse. We have established these properties in Definition 9.3, equa-
tions (2), (3), and (4), and Theorem 9.7.

Let P be a point of C, and let k be a positive integer. We define kP to
be the sum P+ ---+ P of k terms equal to P. We do not need to use
parentheses in the sum because the associative law implies that we can
group the terms in any way. We say that P has finite order n if n is the
least positive integer such that nP = O. If P does not have finite order,
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we say that it has infinite order, which means that kP # O for every posi-
tive integer k.
We assume throughout the rest of this section that the cubic C has the form

y>=x*+ax* +bx +c, (25)

where a, b, ¢ are rational numbers and the right-hand side of this equation
has no repeated factors of the form x —r for a real number r. A cubic of
this form is called an elliptic curve. C is nonsingular (by Theorem 8.2),
and it is irreducible and has a flex at (0,1,0) (by Theorem 8.1(i)). We
take (0,1,0) to be the identity element O for addition on C. O is the point
at infinity on vertical lines, and it is the only point at infinity on C (by
Theorem 8.2(iii)).
Let P = (t,u) be any point of C in the Euclidean plane, and let

V= (t,—u) (26)

be the reflection of P across the x-axis. Since OP is the vertical line
through P, it contains V. V lies on C, since (25) is unchanged by re-
placing y with —y. If u # 0, then P # V, and V is the third intersection
of OP (Figure 9.16). If u = 0, then P equals V (Figure 9.17). In this case,

to O

N

Figure 9.16

to O

PV

X axis

Figure 9.17
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X axis

“ N
©
©

Figure 9.18

to 0

X axis

0
L

Figure 9.19

the tangent to C at P is vertical (by Theorem 8.2(ii)), OP intersects C
twice at P (by Definition 4.9), and so P is the third intersection of OP.
In short, for every point P of C in the Euclidean plane, the third intersection
of OP is the reflection V of P across the x-axis. V equals P exactly when P
lies on the x-axis (Figures 9.16 and 9.17).

This simplifies the geometric construction of addition on C. For any
points P and Q in the Euclidean plane, not necessarily distinct, let S be
the third intersection of line PQ. If S lies in the Euclidean plane, then
P+ Q is the reflection of S across the x-axis (Figure 9.18) (by the pre-
vious paragraph and Definition 9.3). If S= 0O, then P+ Q equals O
(Figure 9.19), since P + Q is the third intersection of OS = OO = tan O,
and that point is O (because O is a flex).

We can simplify the geometric construction of additive inverses in a
similar way. For any point P of C in the Euclidean plane, —P is the third
intersection of line OP (by the discussion accompanying (4)). Together
with the discussion after (26), this shows that —P is the reflection of P
across the x-axis. We can rewrite this algebraically as

—(t,u) = (t, —u). (27)
We also have

—0=0 (28)
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because —O is the third intersection of line OO = tan O (by the discus-
sion accompanying (4)), and that point is O (since O is a flex).

We use the results of the last two paragraphs to add points on elliptic
curves algebraically. Since

O+X=X (29)
for any point X on C, we need only evaluate P + Q when
P = (t,u) and Q= (v,w) (30)

are points of C in the Euclidean plane. We can assume that line PQ is not
vertical, since we have

P+Q=0 (31)
when line PQ is vertical (by the discussion accompanying Figure 9.19).

Suppose first that P # Q. Since we are assuming that the line PQ
through the points in (30) is not vertical, it has slope

Uu—w
m= (32)
t—v
and equation
y=m(x—1t)+u. (33)

Substituting this expression for y in the difference between the two sides
of (25) gives

x4+ ax? +bx+c— (mx —mt +u)?. (34)

The factors of this quantity that have degree 1 correspond to the inter-
sections of line PQ and C in the Euclidean plane, counted with multiplic-
ity (by Theorem 4.3). Since PQ intersects C at the points P and Q with
x-coordinates t and v, the quantity in (34) factors as

x=t)x—v)(x—g) (35)

for a real number g, and g is the x-coordinate of the third intersection of
line PQ (by Theorem 4.3). Comparing the coefficients of x> when we
multiply out (34) and (35) gives

a-mt=—t—v—g
Solving this equation for g gives

g=m’—a—t—o. (36)

This is the x-coordinate of the third intersection of line PQ. We find the
y-coordinate by setting x = g in (33). Multiplying the result by —1 gives
the y-coordinate of P+ Q (by the discussion accompanying Figure 9.18).
In short, P+ Q is the point (g, h) for g given by (36) and for

h=m(t—-g) —u. (37)
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On the other hand, suppose that P = Q. We must determine the point
P+ P = 2P, which is the reflection across the x-axis of the third inter-
section of line PP = tan P. Differentiating (25) implicitly with respect to
x gives

2y dy _ 3x? 4 2ax + b. (38)
dx

Because the tangent at P = (t,u) is not vertical (as we assumed after

(30)), u is nonzero (by Theorem 8.2(ii)). Thus, we can substitute (t, u)

for (x,y) in (38) and solve the result for dy/dx. This gives the slope

m = dy/dx of the tangent at P (as discussed between Theorems 4.10 and

4.11), and so we have

32+ 2at+b
m=——.

o (39)

As in the previous paragraph, the intersections of line PP = tan P and C,
counted with multiplicity, correspond to the factors of the quantity in
(34) that have degree 1. The third intersection of line PP has x-coordinate
g, where (34) factors as

(x —1*(x —g).

This quantity arises from (35) by setting v = ¢, which corresponds to
taking Q = P. It follows, as in the previous paragraph, that P+ P = 2P
is the point (g, h) given by (36) and (37) when m is given by (39) and we
replace v by t in (36).

The fundamental question about an elliptic curve C is to determine all
points (¥, y) on C that have rational coordinates. In other words, we want
to find all solutions of (25) in rational numbers. Addition of points is the
key to attacking this problem.

Let C* be the subset of C composed of the point O at infinity on C and
all points (x, y) of C that have rational coordinates x and y. If the points P
and Q in (30) have rational coordinates t, u, v, w, then the values of m,
g, h given by (32), (36), (37), and (39) are also rational (because the co-
efficients a-c of C are rational, by assumption). Together with (27)-(29)
and (31), this shows that P + Q and —P belong to C* for any points P and Q
in C*. In other words, sums and additive inverses of points of C with
rational coordinates are again points of C with rational coordinates.
Readers familiar with abstract algebra will note that we have shown that
C* is a subgroup of C; this means that C* is a subset of C that contains the
identity element and is closed under addition and taking inverses.

The most basic way to use addition of points to produce elements of
C* is this: given a point P of C*, the points kP also belong to C* for all
positive integers k, by the previous paragraph. For example, consider
the cubic

y? =x% 4+ 3x. (40)
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This is an elliptic curve because the coefficients are rational and the
factorization

x(x% +3)

of the right-hand side over the real numbers has no repeated factors of
degree 1. P = (1, 2) is an obvious point on (40) with rational coordinates.
We find another by computing 2P. We take P=Q = (1,2) = (t,u) =
(v,w) in (30) and a = 0, b = 3, and ¢ = 0 in (25). Equation (39) becomes
3-1+2-0-143 6 3
m— _

2.2 4 2

Substituting m = %, a=0,andt=v =1 in (36) gives
g=(32-0-2.1=},

and (37) gives

Thus, 2P = (4, —%) is also a point of C with rational coordinates. We can
check that this point satisfies (40).
Similarly, we can find another point of C with rational coordinates by

adding P and 2P. We take
P=(t,u) =(1,2) and Q =2P=(v,w) =(

[e=]RN}

)

1
4>

in (30). Equation (32) gives

equation (36) gives

23\? . 484 121

and (37) gives

6 9

Thus, 3P = (121/9,—1342/27) is another point of C with rational coordi-
nates. We can check that this point satisfies (40).

There are also much deeper connections between C* and addition of
points. Barry Mazur proved in 1976 that every element of C* of finite
order has order 1, 2,...,10, or 12, and he determined all possibilities for
the subgroup formed by the elements of C* of finite order. Much less is
known about the elements of C* of infinite order, and important con-
jectures remain open. We say that points Py, ..., Px of C* generate C* if
we can obtain every element of C* by adding these points and their

23 121 1342
27
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inverses any number of times. L.J. Mordell proved in 1922 that C* is
generated by a finite number of points. It remains a major unsolved
problem in number theory to determine the least number of points
needed to generate C*.

Exercises

9.1.

9.2.

9.3.

9.4.

9.5.

A cubic C and a point P are given in each part of this exercise. Check that C
is an elliptic curve and that P is a point of C*. Find the coordinates of the
points 2P and 3P of C*. Check your work by verifying that these coordi-
nates satisfy the given equation.

(a) y* =% +8;(2,4). (b) y*==»° —2x;<2,2>.
(c) y? =x3+x+1;(0,1). (d) yZ:x —x%2 = 3x(=1,1).
(e) y? =x3+x—1;(1,1). (f) y*>=x° 4(2 2).
(@) y> =x%—2x(-1,1). (h) y?>=x%+5x>+3x(1,3).

Let C be a nonsingular, irreducible cubic with a flex O. Add points of C with

respect to O as in Definition 9.3.

(a) Let P, Q, R be points of C that are not necessarily distinct. Prove that
there is a line that intersects C at P, Q, R, counting multiplicities, if
and only if

P+Q+R=0.

(b) Let P be a point of C. Prove that P is a flex of C if and only if 3P = O.

(c) Let P and Q be distinct flexes of C. Use parts (a) and (b) to prove that
the third intersection of line PQ and C is a flex of C that is distinct from
P and Q and collinear with them. (This gives another proof of Exercise
8.6.)

Let C be an elliptic curve.

(a) Prove that C* has either zero, one, or three points of order 2. For each
of the numbers 0, 1, 3, give the equation of an elliptic curve such that
C* has the specified number of points of order 2. (See Theorem 8.2 and
the discussion accompanying Figure 9.19.)

(b) If P and Q are distinct points of order 2 on C*, prove that P+ Q is a
point of order 2 on C* that is distinct from both P and Q.

Let P be a point of an elliptic curve C.

(a) Prove that P has order 3 if and only if P is a flex of C that lies in the
FEuclidean plane.

(b) Prove that P has order 3 if and only if P and 2P are points of the
Euclidean plane that have the same x-coordinate.

Let P be a point of an elliptic curve C.

(a) Prove that P has order 4 if and only if the tangent at P intersects C at a
point on the x-axis not equal to P.

(b) If P has order 4, describe the relative positions of the points P, 2P, and
3P, and use the discussion accompanying Figures 9.18 and 9.19 to
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9.6.

9.7.

9.8.

9.9.

9.10.

justify your answer. Illustrate your answer with a figure that shows an
elliptic curve C, a point P of C of order 4, and the points 2P and 3P.

Let C be a nonsingular, irreducible cubic with a flex O. Add points of C with

respect to O as in Definition 9.3. Let P be a point of C of order 6.

(a) Prove that 2P is a flex of C collinear with P and 3P. Prove that 4P is a
flex of C collinear with 5P and 3P. (See Exercise 9.2.)

(b) Prove that the tangent at P intersects C twice at P and once at 4P. Prove
that the tangent at 5P intersects C twice at 5P and once at 2P. (See Ex-
ercise 9.2(a).)

(c) Mlustrate parts (a) and (b) with a figure that shows an elliptic curve C,
the x-axis, a point P of order 6, the points 2P, 3P, 4P, 5P, the lines
through the two triples of collinear points in (a), and the two tangent
lines in (b).

Let P be a point on an elliptic curve C.

(a) Prove that P has order 6 if and only if it is the third intersection of the
line determined by a flex of C in the Euclidean plane and a point of C
on the x-axis. (See Exercises 9.6(a) and 9.2.)

(b) Prove that P has order 6 if and only if the tangent at P contains a flex of
C that lies in the Euclidean plane and is not equal to P. (See Exercises
9.6(b) and 9.2.)

Mlustrate Theorem 9.6 with a figure in each of the following cases. Restate
the theorem in terms of tangents and flexes as appropriate in each case.

(

(b) E=Gand H=2Z

(c) E=Gand Y =2

(d) E=G=Yand F = H.
(e) E=G=Y

(f) E=G.

(g E=G=YandF=H=Z

Let C be a nonsingular, irreducible cubic. Let P be a point of C that lies on
the tangents at three collinear points R, S, T of C other than P. Prove that P
is a flex of C and that P, R, S, T are the only points of C whose tangents
contain P. (This is the converse of the third sentence of Exercise 8.5.
Exercise 9.8(a) and Theorems 8.1 and 8.2 may be helpful.)

(a) Prove that C is an elliptic curve and P is a point of C* such that
2P = (0,0) if and only if there are nonzero rational numbers ¢t and m
such that

P = (t,mt), (41)
C has equation
Y2 =x3+ (m? = 20)x% + 124, (42)
and the inequality
m* # 4t (43)

holds.
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(Hint: Let C be given by (25). One possible approach is to observe
that the origin is the third intersection of the tangent to C at the point P
given by (41) if and only if t and m are both nonzero and the polynomial

x>+ ax? +bx + ¢ — (mx)?

factors as x(x — t)2. Show in this case that inequality (43) is equivalent
to the condition that the right-hand side of (42) has no repeated factors
of degree 1.)

(b) If P and C are as in part (a), prove that the point P of C* has order 4.

9.11. Let C, P, t, m be as in Exercise 9.10(a).
(a) Prove that there is a point Q of C* such that tan Q has slope 1 and has P
as its third point of intersection if and only if the equation

(m? —t—1)% = 4t(m—1)? (44)

holds.
(Hint: One possible approach is to show that a point Q of C* with
x-coordinate v has the required properties if and only if the polynomial

2+ (m? =202 + 2% — (x — t + mt)? (45)

factors as (x — t)(x — v)?2))
(b) Prove that the point Q in part (a) has order 8.
(c) Prove that rational numbers t and m satisfy (44) if and only if

(2m?* — 2m)*/? (46)
is a rational number and if t = n? for
n=-m+14+ (2m?—2m)/2

(Hint: One possible approach is to prove that (44) holds if and only if
there is a rational number n such that t = n? and

m?—n?—1=2nm-1).

Use the quadratic formula to solve this equation for n in terms of m.)
Prove that the nonzero rational numbers m, such that the quantity in
(46) is also rational, are exactly the numbers

=

2

2
sz _ qz
as p and g vary over all pairs of integers such that p # 0.
(Hint: One possible approach is to set

2m? —2m = k?

for a rational number k, substitute m = p/r and k = q/r for integers g
and 7, solve for r in terms of p and g, and then express m in terms of
pandgq.)

Use parts (a)-(d) and Exercise 9.10 to find two elliptic curves C such
that C* contains an element of order 8. Be sure to check that the con-
ditions t # 0 and ¢ # m?/4 in Exercise 9.10 hold.

o
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9.12. (a) Prove that the elliptic curves C that contain the origin and are such that
C* has a point of order 3 with x-coordinate 1 are exactly the curves

yr=x2+ (=3 +(2r +3)x (47)

for all rational numbers r except 3, —1, and — %

(Hint: Let C be given by (25) with ¢ = 0. One possible approach is to
prove that C has a flex at a point with x-coordinate 1 and has tangent
Yy = rx + s at that point if and only if

x4 ax® +bx — (rx +5)?

factors as (x — 1)3. Ensure that the right-hand side of (47) has no re-
peated factors of degree 1, and then apply Exercise 9.2(b).)

(b) Prove that (0,0) + (1,7 + 1) is an element of C* of order 6. What are the
(x,y) coordinates of this point?

9.13. (a) Find an elliptic curve C such that C* has a point P of order 4 and a
point Q of order 3.
(Hint: One possible approach is to set r = m in (47) and find values
of t and m so that (42) and (47) coincide. Apply Exercises 9.10 and 9.12
after checking that ¢, m, and r satisfy the conditions in these exercises.)
(b) Prove that P+ Q is an element of order 12 in C*.

9.14. Let Cbe an elliptic curve, and let P be a point of the Euclidean plane on C*.
(a) If P has odd order, prove that there is a point Q of C* such that 2Q = P.
(b) If C* has no points Q such that 2Q = P, and if C* has no points of order

2, prove that the order of P is infinite.

9.15. (a) Why is y? = x3 4 3 an elliptic curve C, and why is P = (1,2) a point of
c*?
(b) Why does C* have no elements of order 2?
(c) If P were the third intersection of the tangent at a point T of C*, prove
that the slope m of the tangent would be a rational number m such that
(m? —=1)%2 = 4(m? —4m+1). (48)
(Hint: One possible approach is to prove that, if T existed, the
polynomial
43— (mx—1)+2)>
would factor as
(x —1)(x — v)*
for some value of v.)

Prove that there is no rational number m that satisfies (48).
(Hint: Recall the Rational Root Theorem: if a polynomial

E

X4 A X+ ax + ag

with integer coefficients a; has a rational root 7, then r is an integer and
a positive or negative factor of a.)

(e) Conclude that P is a point of C* that has infinite order. (See Exercise
9.14.)
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Adapt the approach of Exercise 9.15 to show that y? = x3 + x — 1 is an ellip-
tic curve C and that (1,1) is an element of C* that has infinite order.

. Let g(x) = x*> + ax® + bx + c be a polynomial of degree 3 in one variable x

with leading coefficient 1. The quantity
A = 4b* 4 27¢% — a*b? + 4a®c — 18abc (49)

is called the discriminant of q. This exercise shows that g has a repeated
factor of degree 1 if and only if the discriminant is zero. By Theorem 8.2,
this makes it easy to check whether the cubic y? = g(x) is nonsingular: it is
nonsingular if and only if A # 0.

(a) Prove that there is a unique real number k such that

qlx+k) =x>+sx+t (50)

for real numbers s and t. Express k, s, t in terms of a, b, c.
(b) Use Exercise 8.1 to prove that x> + sx +t has a repeated factor if and
only if

4% + 2712 = 0.

(c) Use the expressions for s and t from part (a) to prove that 4s3 4 27t2
equals the quantity on the right-hand side of (49).
(d) Conclude that g(x) has a repeated factor of degree 1 if and only if A =0

An elliptic curve that contains the point P = (0, 1) has the form y? = g(x),
where

qx) =x° +ax* +bx+1 (51)
for rational numbers a and b. Set

bZ
e= i a. (52)
(a) Prove that P has order 5 if and only if 2P and 3P are points of the
Euclidean plane that have the same x-coordinates.
(b) If 3P # O, prove that 2P has x-coordinate ¢ # 0 and that 3P has x-
coordinate (2be + 4) /€.
(c) Conclude from parts (a) and (b) that P has order 5 if and only if ¢ is
nonzero and

e —4
2e

(53)

. (a) Find an elliptic curve C such that (0,1) is a point of C* of order 5 by

taking e = 2 in Exercise 9.18, using (53) to determine b, and using (52)
to determine a. Check that C is nonsingular by using Exercises 9.17 or
8.1.

(b) Repeat part (a) with e = 1.

(c) Repeat part (a) with e = —2.
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§10. Complex Numbers

The complex numbers are formed by adding a square root of —1 to the
real numbers. The Fundamental Theorem of Algebra states that every
polynomial in one variable factors over the complex numbers as a
product of polynomials of degree 1. We introduce the complex numbers
in this section, derive their basic properties, and prove the Fundamental
Theorem.

Over the real numbers, some curves intersect fewer times than others
that have the same degrees. For example, a line and a circle may inter-
sect either twice or not at all. Theorems 4.4 and 5.8 suggest that this
happens because some polynomials in one variable, such as x? + 1, do
not factor over the real numbers into polynomials of degree 1. The
Fundamental Theorem shows that this does not happen over the com-
plex numbers. We use the Fundamental Theorem in Section 11 to prove
Bezout's Theorem, which states that curves of degrees m and n without
common factors intersect exactly mn times, counting multiplicities, over
the complex numbers. We use Bezout's Theorem in Section 12 to com-
plete the classification of cubics that we began in Section 8.

We construct the complex numbers from the real numbers by adding
a quantity i whose square is —1. In other words, because x? + 1 has no
roots in the real numbers, we add one. Formally, a complex number is a
quantity of the form a + bi, where a and b are real numbers. We want the
commutative and associative laws of addition and multiplication and the
distributive law to generalize from the real to the complex numbers, and

we want the relation i> = —1 to hold. This leads us to define addition and
multiplication of complex numbers as follows:

(a+Dbi)+ (c+di) =(a+c)+ (b+d), (1)

(a+ bi)(c + di) = (ac — bd) + (ad + bc)i, (2)

for all real numbers a-d. Equation (2) arises from the desire to have
(bi)(di) = bd(i*) = bd(—1) = —bd.
Consider complex numbers
z=a+ bi, w=c+ di, v=-e+fi, (3)

for real numbers a-f. The commutative laws for adding and multiplying
complex numbers

z+w=w-+z and Zw = wz (4)

hold because the right-hand sides of (1) and (2) are unaffected by inter-
changing a with ¢ and b with d. The associative law for adding complex
numbers

(z+w)+v=z+(w+0) (5)
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holds because both sides of this equation equal
(a+c+e)+(b+d+ fi
The associative law for multiplying complex numbers
(zw)v = z(wv) (6)
holds because both sides of this equation equal
(ace — adf — bef — bde) + (bee + ade + acf — bdf)i.

The distributive law for complex numbers

z(w+v) = zw + zv (7)
holds because both sides of this equation equal

(ac — bd 4+ ae — bf) + (ad + bc + af + be)i.

The associative law of addition (5) ensures that we can write sums of
complex numbers without parentheses. The associative law of multi-
plication (6) lets us define z" as the product of n factors of z for any com-
plex number z and any positive integer n. Equations (4)-(7) imply that
we can work with polynomials with complex coefficients and evaluate
them by substituting complex numbers for the variables just as we do
over the real numbers.

We identify each real number a with the complex number a + 0i. The
addition and multiplication of complex numbers in (1) and (2) give the
usual addition and multiplication of real numbers. Thus, we can think
of the complex numbers as containing the real numbers. Equations (1)
and (2) imply that 0 and 1 satisfy their usual properties 0+ w = w,
Ow = 0, and 1w = w for all complex numbers w.

We define —w to be (—1)w, and we define z — w to be z+ (—w), for
any complex numbers w and z. In the notation of (3), we have

—w = (—c) + (—4)i, (8)
z—w=(a—c)+(b-4d)i, (9)
w—w=w+(—w) =0. (10)

We match up the complex numbers with the points of the Euclidean
plane by associating the complex number a + bi with the point (a, b) in
standard (x, y) coordinates for all real numbers a and b (Figure 10.1). We
define the modulus |a + bi| of a + bi to be the distance from this point to
the origin. By the Pythagorean Theorem, we have

la+bi| = (a* +b*)'/. (11)

Because the modulus |z| of a complex number z is the distance from z to
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Figure 10.1

zero, it represents the “size” of z. It is clear that
|z| >0 (12)
for every complex number z and that

|z =0 if and only if z=0. (13)
Because the right-hand side of (11) is unchanged if we replace a and b
with —a and —b, equations (8) and (11) imply that
|—z| = |z]. (14)
In the notation of (3), we have
1z—w| =[(a—c)?+(b-d)??

by (9) and (11). Thus, |z — w| is the distance between the points z and w in
the plane. In particular, it follows that

|z —w| =|w-—2z|. (15)

Equation (1) shows that the x- and y-coordinates of z + w are the sums
of the x- and y-coordinates of z and w. It follows that z + w is the fourth
vertex of the parallelogram that has consecutive vertices z, 0, w (as
in Figure 10.2). (The parallelogram collapses when z, 0, w lie on a line.)
Because a straight line is the shortest distance between two points, it

Z+w

Figure 10.2
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cos 0 +isin 6

al
N

Figure 10.3

follows that
|z4+w| < |z] + [w] : (16)

the left-hand side is the distance from 0 to z + w, and the right-hand side
is the sum of the distances from 0 to z and from z to z + w.
If we substitute z + w for z and —w for w in (16), we obtain

lz| < |z4+w| + |—w|, (17)

since (5) and (10) imply that (z + w) + (—w) = z+ 0 = z. By (14), we can
rewrite inequality (17) as

|z +w| > |z| — |w]. (18)

Let z be a nonzero complex number, and let 6 be the angle that lies
counterclockwise after the positive x-axis and before the ray from the
origin O through z (Figure 10.3). This ray intersects the unit circle at the
point that has (x, y)-coordinates (cos , sin 6) and that corresponds to the
complex number cos 0 + isin 0. If we multiply the x- and y-coordinates of
this point by |z|, we obtain the x- and y-coordinates of z. Thus, we have

z = |z|(cos @ +isind). (19)

We call this the polar form of z because |z| and 6 are the polar coordi-
nates of the point z. We can also write 0 in the form of (19) for any angle
0, since |0| = 0.

For any complex number z given by (19), —z has the same modulus
as z (by (14)), and it corresponds to the angle 0 + n (since —z and z lie
in diametrically opposite directions from the origin, as in Figure 10.4).
Thus, we have

—z = |z|(cos(0 + ) + isin(0 + 7)). (20)

Let z and w be complex numbers given in polar form by (19) and the
equation

w = |w|(cosy +isiny). (21)
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Figure 10.4

Equation (2) shows that
(cos @+ isin ) (cosy + isiny)
= (cosfOcosy — sinOsiny) + i(sin O cosy + cos 0 sin )
= cos(0 + ) +isin(6 + )

(by the angle-addition formulas of trigonometry). Multiplying these
quantities by |z| |w| shows that

zw = |z| |w|[cos(0 + ) + isin(0 + )] (22)

(by (19), (21), (4), and (6)). Thus, we multiply complex numbers in polar
form by multiplying their moduli and adding their angles.
Because (22) express zw in polar form, it follows that

2] = || fw]. (23)
Equations (13) and (23) imply that
zw=0 ifandonlyif z=0 or w=0. (24)
For any positive integer n, it follows from (22) that
z" = |z|"(cos(nb) + isin(nd)). (25)

Any complex number w has an nth root z for any positive integer n: if
(21) gives w in polar form, then

z = |w|"/"(cos(y/n) + isin(y/n))

satisfies z" = w (by (25)).
Let z be a nonzero complex number given in polar form by (19). Since
|z] # 0 (by (13)), we can set

z7! :L(cos(—ﬁ) +isin(—0)). (26)

2]

This equation shows that

|z7l = —. (27)
2]
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If we take w = z 7!, (22) becomes
2zt =1, (28)

because |z| |w| = |z| |z7'| =1 (by (27)), 0+ =0 —0 =0, and cos0 +
isin0 = 1 +1i0 = 1. Equation (28) shows that we can think of z~! as the
reciprocal of z and think of multiplication by z! as “division by z.” Of
course, we cannot divide by zero.

For any real numbers a and b, we define the conjugate z of the com-
plex number z = a + bi by setting

zZ=a— bi.
It is clear that
z =1z if and only if z is real. (29)
The conjugate of a — bi is a — (—b)i = a + bi, and so
w=2z if and only if z=w. (30)

In other words, conjugation interchanges complex numbers in pairs,
pairing each real number with itself.
For any complex numbers z = a + bi and w = ¢ + di, we have

ztw=2z+1w, (31)
since both sides of this equation equal
(a+c) +(=b—a)u.
We also have
ZW=Z W: (32)
conjugating both sides of (2) shows that zw equals
(ac — bd) — (ad + be)i,

and replacing b and d with —b and —d in (2) shows that Z - @ has the
same value. Equations (31) and (32) show that conjugation preserves
addition and multiplication of complex numbers.

We have formed the complex numbers from the real numbers by
adding a root i of the polynomial x> 4+ 1. Amazingly, this is enough to en-
sure that every nonconstant polynomial in one variable has a root in the
complex numbers. Equivalently, every nonconstant polynomial in one
variable factors over the complex numbers as a product of polynomials
of degree 1. This is the Fundamental Theorem of Algebra, and we devote
the rest of the section to its proof. The self-contained proof we present is
adapted from the article by Charles Fefferman listed in the References at
the end of the book.
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For the rest of this section, we let f(x) be a nonconstant polynomial in one
variable with complex coefficients. We write

fx) = anx" + -+ + ar1x + ao (33)

for complex numbers a,, ..., aq, where a, # 0 and n > 1.

To prove the Fundamental Theorem of Algebra, we must prove that
f(w) = 0 for some complex number w. We do so by proving that |f(x)|
takes a minimum value at a complex number w and deducing that
|f(w)| must be zero. We divide the argument into a sequence of six
claims.

Claim 1

Let w be a complex number, and let € be a positive real number. Then there is
a real number 6 > 0 such that | f(z) — f(w)| < & for all complex numbers z
such that |z —w| <.

This claim means that f(z) approaches f(w) as z approaches w. More
precisely, it shows that we can make f(z) as close as we wish to f(w)
by choosing z close enough to w. It is the analogue over the complex
numbers of the result in single-variable calculus that polynomials are
continuous.

To prove the claim, we assume first that w = 0. Since f(0) = aq (by
(33)), we must find a real number J > 0 such that |f(z) — a¢| < ¢ for all
complex numbers z such that |z| < J. Equation (33) shows that

|f(z) —ao| = |anz™ + -+ + a12|
<l|apz"|+- -+ |a1z| (by (16))
= lan| 2" + -+ 1] |2] (34)
(by (23)). If |z| <1, we have |z < |z| for each integer j > 1, and the
quantity in (34) is less than or equal to
(lan| + -+ |ar])|z].

This quantity is less than ¢ if  is no larger than
e

|an] + -+ |as |

In short, if we take ¢ to be the smaller of 1 and the quantity in (35), then
0 is a positive real number such that

If(z) —f(0)| <& if |z] <.

This establishes Claim 1 when w = 0.
To prove the claim when w is any complex number, we define a new
polynomial g(t) with complex coefficients by setting

g(t) = f(t+w). (36)

(35)
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The previous paragraph shows that there is a real number J > 0 such
that

lg(t) —g(0)] < ¢ if  |t] < 0.
Substituting from (36) shows that
lf(t+w) —fw)]| <e if  |t] <o.
Finally, setting t = z — w shows that
|f(z) —flw)| <e if |z—w| <3,
as desired.
Claim 2

For any real number M > 0, there is a real number R >0 such that
| f(z)| > M for all complex numbers z such that |z| > R.

This claim shows that |f(z)| grows large as |z| grows large. To prove
that f(z) takes the value zero for some complex number z, we want to
choose |f(z)| to be as small as possible. Claim 2 shows we need only
consider complex numbers z in a finite part of the plane when we mini-
mize |f(z)].

To prove Claim 2, we substitute a nonzero complex number z for x in
(33) and factor out z". This shows that

|f(2)] = |2"(an + an127" + -+ ag(z)")]
(by (4), (6), (7), and (28))
= |z|" |an + ap1z"" + -+ ag(z7H)
(by (23))
> |z|"(|an| = |an1z"" + -+ +ao(z)"])
(by inequality (18)). In other words, we have
f(2)] = |2|"(Jan| - |g(z"1)]) (37)

for
g(t) = ap_1t+ -+ apt". (38)

We have |a,| > 0 (by (12), (13), and the assumption after (33) that
an #0). We replace f with g, w with 0, and ¢ with £ |a,| in Claim 1. Since
g(0) = 0 (by (38)), there is a real number § > 0 such that

lg(t) <glax| if [t| <o. (39)
If we sett =z~ ! for |z| > 1/d, we have
1
=l =L <a

2|



10. Complex Numbers 183
N p

(by (27)), and (39) shows that
gz <3 lanl.
Combining this inequality with inequality (37) gives
1f(@)] > |z"(|an| = 3]an]) =3 |an| |2]" (40)

for |z| > 1/0. If |z| is also greater than

1/n
() )

(which makes sense because of the assumption after (33) that n > 1),
inequality (40) shows that |f(z)| > M. In short, if we take R to be the
larger of 1/0 and the quantity in (41), we have |f(z)| > M for all complex
numbers z such that |z| > R, as desired.

Claim 3
There is a complex number w such that |f(w)| < |f(2)| for all complex
numbers z.

This claim shows that |f(x)| has a minimum value |f(w)|; that is,
there is a point w where |f(x)| takes a value less than or equal to its
value at every other point. We show in Claims 4 and 5 that | f(w)| cannot
be positive; then it must be zero, and the Fundamental Theorem holds.

Let T be a set of real numbers. A lower bound of T is a real number ¢
such that ¢ < x for all numbers x in T. That is, a lower bound of a set T is
a number less than or equal to every element of T. A greatest lower bound
d of T is a lower bound of T such that d > ¢ for every lower bound c of T.
In other words, a greatest lower bound of T is the largest possible lower
bound of T. For example, the number # = 3.14159. .. is the greatest lower
bound of the set of real numbers

{4,3.2,3.15,3.142, 3.1416, 3.14160, . . .}

obtained by terminating = after a finite number of digits and adding one
to the last digit.
The following is a key property of the real numbers:

Completeness Property of the Real Numbers
If a nonempty set of real numbers has a lower bound, then it has a
greatest lower bound.

Informally, the Completeness Property means that “there are no
holes in the real number line.” It holds because every infinite decimal
represents a real number.

We use the Completeness Property to prove Claim 3. Let T be the set
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of all real numbers |f(z)| as z varies over all complex numbers. T has
zero as a lower bound (by inequality (12)), and so it has a greatest lower
bound d > 0.

Let k be any positive integer. Since d is the greatest lower bound of T,
d+1/k is not a lower bound of T. Thus, there is a complex number zj
such that

1
fla] < d+. (42)
We consider the sequence zi, 2y, z3, . .. of complex numbers, which may

include repetitions.
By Claim 2, there is a real number R > 0 such that

|f(z)] >d+1 if |z| >R (43)

Let S; be the square centered at the origin in the plane that has sides of
length 2R (Figure 10.5). Every point z of the plane outside of §; lies more
than R units from the origin, and so |f(z)| is at least d + 1 (by (43)).
Thus, all of the points z;, z, ... lie in S; (by (42)).

The coordinate axes divide S; into four squares of equal size, as in
Figure 10.5. At least one of these four squares contains the points zx for
infinitely many values of k, and we let S; be such a square (Figure 10.6).
We then subdivide S, into four squares of equal size. At least one of these
squares contains the points zj for infinitely many values of k, and we let
83 be such a square. Continuing in this way, we obtain a sequence of
squares

SlDSZDS3D"' (44)

such that each square §; contains the points z for infinitely many posi-
tive integers k.

The upper right corner of each square §; is a complex number p; + g;i
for real numbers p; and g;. The nesting of the squares in (44) implies that
the upper right corners p; + gji of the squares can only move down or to

-R

Figure 10.5
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Sl
B
Sy
Figure 10.6
the left as j increases. Thus, we have
pPr=2pr=2p3=--- and M =2q=qz=". (45)
The sets
{p1.p2,ps-- -} and  {q1,42,43,.. .} (46)

are both bounded below by —R, since all of the squares §; lie within ;.
Thus, we can let p and g be the greatest lower bounds of the two sets
in (46). We set w = p + qi. We picture w as the complex number ap-
proached by the upper right corners of the squares §; as j goes to infinity.
We use inequality (42) to show that |f(x)| takes its minimum value at w.

Because the sets in (46) are bounded below by —R, their greatest lower
bounds p and g are greater than or equal to —R. On the other hand, p and
g are both less than or equal to R, since the coordinates p; and ¢, of the
upper right corner of S; equal R. The facts that p and g lie between —R
and R, inclusive, imply that w = p + qi lies in the square S;. It follows in
the same way that w lies in all of the squares §;, since the inequalities in
(45) imply that p and g are the greatest lower bounds of the sets.

{pj;pj«l»h . } and {q]; qj+17 . }

for every positive integer j.
Let ¢ be any positive real number. By Claim 1, there is a real number
0 > 0 such that

|f(z) —flw)| <& if |z—w| <. (47)

Because each square in (44) is half as long as its predecessor, the lengths
of the diagonals of the squares §; shrink to zero as j increases. Accord-
ingly, there is a positive integer u such that any two points of S, are
less than J units apart. S, contains w (by the previous paragraph), and
it contains zj for infinitely many positive integers k. For these values of
k, we have

|Zk—LU| <5,

which implies that

[flz) = fw)| <e (48)
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(by (47)). It follows that

|f(w)| = [f(w) = f(z) + f(z)|  (by (5) and (10))
< |f(w) = fz)| + | f(zx)|  (by (16))

< s+d+% (by (15),(42), and (48)).

Because this inequality holds for infinitely many positive integers k,
we have |f(w)| <&+ d. This holds for all positive real numbers ¢, and
so we have

|f(w)] <d. (49)

On the other hand, since d is the greatest lower bound of the set of real
numbers | f(z)| as z varies over all complex numbers, we have d < |f(2)]
for all complex numbers z. Together with inequality (49), this shows that

|fw)] < [f(2)]
for all complex numbers z, which completes the proof of Claim 3.
We have proved that | f(x)| takes a minimum value at a point w. To
complete the proof of the Fundamental Theorem of Algebra, we show
that f(w) = 0. We eliminate the possibility that |f(w)| > 0 by showing

that we could reduce |f(x)| further in that case. We prove this first
when w is the origin 0.

Claim 4
If |f(0)] > 0, then there is a complex number z such that |f(z)| < |f(0)].

To prove the claim, we consider the expression for f in (33). We note
that
lao| = [f(0)] >0 (50)

(by assumption). As stated before (33), we are assuming that f is not con-
stant. Thus, we can let k be the smallest positive integer such that a;x* is
a nonzero term of f. We can write

|f(z)| = \anz”+-~+akzk+ao|
< lanz" + -+ a2 + lard" +aol  (by (16))
= 2@z + -+ a2)| + Jarzt + aol
(by (4), (6), and (7))
= |z[M|anz" " + - arz| + |axz + ao (51)

(by (23)).
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We consider first how small we can make the last quantity in (51).
Let z, ag, ax lie at angles 0, a, f, respectively, measured counterclockwise
from the positive x-axis. Then a;z* lies at the angle f + k0 (by (22)). We
choose the angle 6 at which z lies so that

pf+kO=0+mn
by setting
1
0:%(oc+7z—[>’). (52)

Since axzF has modulus |ax| |z|* (by (23)), the two previous sentences
and (19) show that

arz® = |ax| |z|"[cos(a + 1) + isin(x 4 7))

= —|ax| |z|*(cos o + isin o) (53)

(by (20)). Since ay lies at angle o, we have

ag = |aog|(cosa+isina).

Together with (53) and (7), this shows that

axz" 4 ag = (|ao| — |ax| |z|*)(cos a + isin ). (54)
Since ax # 0, we have

lax| >0 (55)

(by (12) and (13)). Together with inequality (50), this shows that the first
factor on the right-hand side of (54) is positive if

1/k
12| < <|a°|) . (56)
|a|

In this case, (54) shows that
laxz" 4+ ao| = |ao| — |ax| |z|*. (57)

The first term in (51) does not exist when n equals k, which occurs
when f has only one term of positive degree. To analyze the first term
n (51) when it does exist, we set

g(z) = anznik + -+ Az

By inequality (55), we can apply Claim 1 with f replaced by g, w re-
placed by 0, and ¢ replaced by % |ax|. Since g(0) = 0, there is a real num-
ber ¢ > 0 such that

|anz" ™+ - araz] < §lax] (58)

if |z| < 0.
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The right-hand side of inequality (56) is positive (by (50) and (55)).
Thus we can choose a complex number z that lies on the angle 6 in (52)
and whose modulus |z| is a positive real number that is less than 0 and
also satisifes inequality (56). The two preceding paragraphs show that
(57) and inequality (58) hold. Combining these relations with inequality
(51) shows that

|f(2)] <5laxl |2]" + lao| — |ax] |2[*
= |ao| — 3 lax| |z]*.

This quantity is less than |ag|, since |ax| and |z| are both positive.
Together with (50), this shows that | f(z)| is less than |f(0)]|, as claimed.

We can summarize the foregoing proof of Claim 4 as follows. We con-
sider the term ayz* of smallest positive degree appearing in f. Given that
lag| = |£(0)] is positive, we choose the angle at which z lies so that axz*
is diametrically opposite to ay. Then axz* 4 a, has smaller modulus than
ap when |z| is not too large. We also choose |z| to be small enough that
the terms of f of degree greater than k are negligible compared to axz";
this is based on the idea that higher powers of z go to zero faster than
lower powers as z goes to zero. It follows that |f(z)| is less than
lag| = |f(0)]|, as desired.

We have proved that |f(x)| cannot have a minimum value at the ori-
gin 0 if |f(0)| > 0. We show next that |f(x)| cannot have a minimum
value at any point v such that |f(v)| > 0: we translate v to the origin
and apply the previous result.

Claim 5

If v is a complex number such that | f(v)| > 0, then there is a complex num-
ber u such that |f(u)| < |f(v)].

To prove the claim, we define a polynomial g with complex coeffi-
cients by setting

gt) =flt+v). (59)
Since f is not constant, neither is g. Setting t = 0 shows that
lg(0)] = |f(v)] > 0.
By Claim 4, there is a complex number z such that
lg(2)] < |g(0)].
Together with (59), this shows that
[f(z+v)| = |g(2)| < 1g(0)| = [f(w)I,

as desired.
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Claim 3 shows that | f(x)| takes a minimum value at a point w. On the
other hand, Claim 5 shows that |f(x)| cannot take a minimum value at
any point v such that |f(v)| > 0. Thus, we must have |f(w)| =0 (by
(12)), and so f(w) = 0 (by (13)). We have proved the following result:

Claim 6
Over the complex numbers, every polynomial in one variable of positive de-
gree has a root.

This result leads directly to the Fundamental Theorem of Algebra. We
call complex numbers distinct when no two of them are equal.

Theorem 10.1 (The Fundamental Theorem of Algebra)
Over the complex numbers, every polynomial f(x) in one variable of positive
degree n factors as

flx) =r(x —w1) - (x — wy)

for complex numbers r, wy, ..., w,, where r # 0 and the w; are not neces-
sarily distinct.

Proof
By Claim 6, there is a complex number w; such that f(w;) = 0. Then the
analogue of Theorem 1.10(ii) over the complex numbers shows that

fx) = (x —wi)fi(x) (60)

for a polynomial fi(x) of degree n — 1 over the complex numbers.

If n =1, then fi(x) is a constant, and we are done. Otherwise, Claim 6
and the complex analogue of Theorem 1.10(ii) show that there is a com-
plex number w, such that

filx) = (x —ws)fa(x) (61)

for a polynomial f,(x) of degree n — 2 over the complex numbers. Substi-
tuting (61) into (60) gives

fx) = (x —wi)(x — w2)fa(%).

We continue in this way until we have factored f completely. I

The Fundamental Theorem of Algebra shows that every polynomial
in one variable of degree greater than 1 is reducible over the complex
numbers. This is not true for polynomials in two or more variables. For
example, y? — x3 is irreducible over the complex as well as the real num-
bers: looking at powers of y shows that y? — x3 could only factor as

(y —g(¥)(y +g(x)

for some polynomial g(x) such that g(x)? = x3, but no such polynomial
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exists. The existence of irreducible polynomials of degree greater than 1
in two variables over the complex numbers ensures that the study of
curves over the complex numbers is nontrivial. We pursue this study in
the next section.

Exercises

10.1.

10.2.

10.3.

10.4.

10.5.

Consider the complex numbers z=2+3i, w=5—2i, and v=—1+1.
Evaluate the following complex numbers, writing each one in the form
a + bi for real numbers a and b :

(a) 5iv+ zw. (b) zviv.

(c) v* — 31> + 6. (d) z3 —w.
(e) V¥ —iv+w. (f) iz + 3w?.
(a

(b)

For any complex number z, prove that zz = |z|%.
For any complex number z # 0, prove that z~! = |z|72Z. (This makes
it easy to find the inverse of a complex number written in the form

a + bi for real numbers a and b.)

This exercise is used in Exercises 11.13-11.15 and 12.24-12.28. Let

V3, (62)

1
»=3"7

(a) Write @ in polar form.
(b) Prove that the polynomial x* + 1 in one variable x factors over the
complex numbers as

P Hl=x+1)(x—o)(x+ o).

(c) Prove that there are exactly two complex numbers z such that
z?2 —z+1 =0, namely, w and —w?.
(d) Prove thatw ! =1—-wand (1 —w)"! = w.

Let x be an indeterminate, let n be a positive integer, and let w be a non-
zero complex number given in polar form by (21). Prove that

K —w=(x—2)(x —21) - (X — 2 1)

2mj 2nj
z = |w|'/"|cos vt +isin vt .
! n n

(This amplifies the discussion of nth roots after (25).)

for

Let x be an indeterminate, and let a, b, ¢ be complex numbers such that
a # 0. By the sentence after (25), there is a complex number z such that
z? = b? — 4ac. Prove that

ax’> +bx+c=alx—v;)(x —vy)
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for
v = (2a) 7 (=b + (=1)z).
(This extends the quadratic formula to the complex numbers. Like Exer-

cises 10.3 and 10.4, this exercise gives a concrete illustration of the Fun-
damental Theorem of Algebra.)

We consider cubics over the real numbers in the remaining exercises, which extend the
results of Section 9.

10.6.

10.7.

10.8.

10.9.

Prove the following result:

Theorem

Let C be a nonsingular, irreducible cubic. Let K be a conic that intersects C at
six points E, F, G, H, W, X, listed by multiplicity. Let Y and Z be the third
intersections of lines EG and FH. Then the third intersections of the lines WX
and YZ are the same point.

(This theorem corresponds to Theorem 9.6 when the lines EF and GH
are replaced by a conic K. One possible way to prove the theorem is to use
Theorem 6.1 to “peel oft” the conic K from the intersection of the cubic C
and the cubic consisting of the three lines EG, FH, WX. Theorem 4.11 may
help to prove that the latter cubic intersects K in the same six points,
listed by multiplicity, as C does in cases where E=G, F = H, or W = X.)

MNlustrate the theorem in Exercise 10.6 with a figure in each of the follow-
ing cases. Restate the theorem as appropriate in each case in terms of
tangents.

a) No two of the points E-H, W, X are equal.

E=G,F=H,and W = X.

E=F,G=W,and H = X.

E=Gand F = H.

Let C be a nonsingular, irreducible cubic with a flex O. Add points of C
with respect to O as in Definition 9.3. Let P;-Ps be points of C that are
not necessarily distinct.

(a) If a conic intersects C at P;-Pg, listed by multiplicity, prove that
P) +---+ Ps = O by combining the theorem in Exercise 10.6 with
repeated applications of Exercise 9.2(a).

(b) If a curve of degree 2 intersects C at P;-Pg, listed by multiplicity,
prove that P, + --- + Ps = O. (See part (a), Exercises 5.20 and 9.2(a),
and Theorems 5.1 and 3.6(iii). Exercise 14.12 develops this exercise
further.)

Prove the following result, which generalizes Theorem 9.6 and Exercise
10.6.

Theorem
Let C be a nonsingular, irreducible cubic. Let K and K' be curves of degree 2
such that K intersects C at points E, F, G, H, W, X, listed by multiplicity, and
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10.10.

10.11.

10.12.

10.13.

10.14.

10.15.

III. Cubics

K' intersects C at points E, F, G, H, Y, Z, listed by multiplicity. Then the lines
WX and YZ have the same point as their third intersection with C.

(One approach is to use Theorem 5.1 and Exercise 5.20 and vary either
the conic K or the lines EG and FH in Exercise 10.6. Another approach
uses Exercises 10.8(b) and 9.2(a) and the fact, which Theorem 12.7 shows,
that C has a flex.)

Let C be a nonsingular, irreducible cubic. Let P be a point of C at which
the tangent contains a flex of C not equal to P. Prove that there is a conic
that intersects C six times at P.

(Exercise 10.12 contains the converse of this result. One possible way
to prove this result is to reduce to the case where P is the origin and C has
equation y? = x3 + fx? + gx for g # 0. Show that y? = fx? + gx is a conic
that intersects C six times at the origin.)

Prove that a conic K intersects an irreducible cubic C at most twice at a
flex of C.

(Hint: One possible approach is to use Theorems 4.11 and 8.1(i) and
Exercise 5.16 to reduce to the case where K is y = x2, C is given by (5) of
Section 8, and the flex is at infinity.)

Let C be a nonsingular, irreducible cubic, and let P be a point of C. We call
P a sextatic point of C if there is a conic that intersects C six times at P.
Prove that P is a sextatic point of C if and only if the tangent at P contains
a flex of C not equal to P. (See Exercises 10.6, 10.10, and 10.11.)

Let C be a nonsingular, irreducible cubic with a flex O. Add points of C

with respect to O as in Definition 9.3. Let P be a point of C, and define

sextatic points as in Exercise 10.12.

(a) Prove that P is a sextatic point if and only if 6P = O and 3P # O. (See
Exercises 9.2 and 10.12.)

(b) Prove that P is a sextatic point of C if and only if P has order 2 or 6.

Let G and H be curves nonsingular at a point A, and let L be a line. Prove
that two of the numbers I4(L,G), Ix(L,H), I,(G, H) are equal and their
common value is less than or equal to the third.

(This exercise analyzes the intersections in Theorem 9.4 in more detail
when G and H are both nonsingular at A. The proof of that theorem can
be adapted to do this exercise when I4(L, G) and I,(L,H) are finite and
equal. Other cases can be handled by Theorems 9.4, 4.5, and 3.6. The
line L is replaced with any curve nonsingular at A in Exercise 15.22.)

Let m and n be positive integers or oo such that m < n. In each part of this
exercise, give an example of curves G and H that are nonsingular at the
origin O and satisfy the given conditions.
(a) Io(G,H) = Ip(y, H) = m and Ip(y, G) = n.
(b) Io(y,G) = Io(y,H) = m and I5(G, H) = n.

(Cases where n = co may need separate consideration. Exercise 10.14
and Theorem 3.6(iii) imply that parts (a) and (b) include all possible
values for the three intersection multiplicities.)
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10.16.

10.17.

10.18.

10.19.

For any positive integers m and n, find an example of curves G and H
such that H is nonsingular at the origin O, y is not a factor of G,
Io(y,H) =1, Ip(y, G) = m, and Io(G, H) = n. (Thus, Theorems 9.4 and 9.5
are false without the assumption that G is nonsingular, even when H is
nonsingular.)

Let C be a nonsingular, irreducible cubic. Let O be any point of C, not
necessarily a flex. Define P+ Q for any points P and Q of C as in Defini-
tion 9.3. Let T be the third intersection of line OO. For any point P of C,
prove that the third intersection of line PT is a point —P such that
P+ (—P)=0.

(The proofs of Theorem 9.7 and (2) and (3) of Section 9 do not require
O to be a flex. Thus, this exercise shows that C is an abelian group, as de-
fined after the proof of Theorem 9.7, whose identity element is any point
O of C, not necessarily a flex.)

Let C be a nonsingular, irreducible cubic, and let O and O’ be two points of
C. As in Exercise 10.17, use O to define P + Q for any points P and Q of C,
and use O’ in place of O to define P +' Q.

(a) Prove that (P+' Q)+ O = P+ Q for any points P and Q of C.

(b) Set f(X) = X + O for any point X of C. Conclude from part (a) that

f(P)+ f(Q) =f(P+Q) (63)

for any points P and Q of C.
(c) For any point R of C, prove that there is a unique point P of C such
that f(P) = R.

(In general, an isomorphism between abelian groups (C, +) and
(C’, +') is a map f that matches up the elements of C and C’ and
satisfies (63) for all elements P and Q of C. There is an isomorphism
between two abelian groups when they “look alike,” differing only in
the labeling of their elements. Parts (b) and (c) show that there is an
isomorphism between any two of the abelian groups determined by
a nonsingular, irreducible cubic for different choices of identity ele-
ment.)

Let C be an irreducible cubic. Let P and Q be points of C at which C is
nonsingular and which may or may not be distinct. Define the third inter-
section R of line PQ and C as after the proof of Theorem 9.1. Prove that C
is nonsingular at R.

Exercises 10.20-10.22 use the following terminology. If C is an irreducible cubic that
has a flex O, we let G, be the set of nonsingular points of C. Define the sum of
two points of C, as in Definition 9.3. This sum is a point of C, (by Exercise
10.19), and so C, is closed under addition. The proofs of equations (2)-(4) of
Section 9 show that addition is commutative, O is an identity element, and every
element of C,, has an additive inverse. Addition on C, is associative, since the
proof of Theorem 9.6 requires only that C be nonsingular at the points in Figures
9.11 and 9.12, which, in Theorem 9.7, become the points in Figures 9.13 and 9.14.
Thus, C, is an abelian group. In the following exercises, C has the form of (25) of
Section 9, except that the right-hand side of the equation now has repeated roots.
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Define addition on C, by taking O to be the flex (0,1,0) (as in Theorem 8.1(i)).
Equations (26)-(39) of Section 9 describe addition on C,,.

10.20. Let C be y? = x* (Figure 8.5).

(a)

(b)

(c)
(d)

(e)

Prove that the map g(t) = (t?, %) matches up the real numbers t with
the points of C in the Euclidean plane.
Define a map f by setting f(p) = g(1/p) for any nonzero real number
p and setting f(0) = (0,1,0). Prove that f matches up the real num-
bers with the points of C,,.
For any real number p, prove that f(—p) = —f(p) and that f(—2p) lies
on the tangent to C at f(p).
If p and g are real numbers such that the points f(p), f(gq), and
f(—p — q) are distinct, prove that these points are collinear.
Deduce that f(p)+ f(q) =f(p+q) for all real numbers p and g,
whether or not they are distinct.

(Thus, addition on C, looks like addition of real numbers. The map
f is an isomorphism, as defined in Exercise 10.18.)

10.21. Let C be y? = x® — x? (Figure 8.7).

(a)

(b)

Prove that the map g(t) = (t? + 1,3 4 t) matches up the real numbers
t with the points of C, in the Euclidean plane.
Define a map f by setting

f(cosO+isinf) = g(t)

for t = —cot(6/2) when 6 is a real number that is not an integral
multiple of 2z and setting f(1) = (0,1,0). Prove that f matches up
the complex numbers of modulus 1 with the points of C,. If
P =(cosf,sinf) is any point other than (1,0) on the unit circle
x? +y? =1, prove that f maps the complex number cos +isin@
associated with P to the unique point Q = (t> + 1,3 +t) of C, such
that the line through Q and the origin (0,0) is parallel to the line
through P and (1,0) (Figure 10.7).

For any complex number z of modulus 1, prove that f(1/z) = —f(z)
and that f((z?)7') lies on the tangent at f(z).

If z and w are complex numbers of modulus 1 such that the points
f(z), f(w), and f((zw)~!) are distinct, prove that these points are
collinear.

Deduce that f(z) + f(w) = f(zw) for all complex numbers z and w of
modulus 1, whether or not they are distinct. (Thus, addition on C,

P

/k (1,0
N

Figure 10.7
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looks like multiplication of complex numbers of modulus 1: f is an
isomorphism, as defined in Exercise 10.18.)

10.22. Let C be the cubic y? = x* + x? (Figure 8.6).
(a) Prove that the map g(t) = (t?> — 1,3 — t) matches up the real numbers
t # +1 with the points of C,, in the Euclidean plane.
(b) Define a map f by setting f(p) = g(t) for

_p+l

=1
when p is a real number other than 0 and 1 and setting (1) = (0,1, 0).
Prove that f matches up the nonzero real numbers with the points
of C,,.

(c) For any real number p # 0, prove that f(1/p) = —f(p) and that
£(1/p?) lies on the tangent at f(p).

(d) If p and g are real numbers such that the points f(p), f(gq), and
f(1/(pq)) are distinct, prove that these points are collinear.

(e) Deduce that f(p) + f(q) = f(pq) for all nonzero real numbers p and g,
whether or not they are distinct. (Thus, addition on C, looks like
multiplication of nonzero real numbers. The map f is an isomor-
phism, as defined in Exercise 10.18.)

t

§11. Bezout’s Theorem

Our goal is to prove that every irreducible cubic in the real projective
plane has a flex or a singular point and is therefore classified by Theo-
rems 8.3 and 8.4. We deduce this result in Section 12 from Bezout's
Theorem, which we prove in this section.

We extend to the complex numbers the definitions and basic proper-
ties of the projective plane, curves, intersection multiplicities, and
transformations. Bezout's Theorem states that curves of degrees m and
n without common factors of positive degree intersect exactly mn times,
counting multiplicities, over the complex numbers. The proofs of Theo-
rems 4.4 and 4.5 on the intersections of lines and other curves extend to
the complex numbers to give Bezout's Theorem when one of the curves
is a line—that is, when m or n is 1. We deduce from this result that
Bezout's Theorem holds for curves of all degrees by repeatedly reducing
the highest exponent of y that appears in the equations of the curves.

If two homogeneous polynomials with real coefficients have a
common factor of positive degree over the complex numbers, we prove
that they also have a common factor of positive degree over the real
numbers. We use this result in two ways. First, we use it in this section
to deduce an analogue over the real numbers of Bezout's Theorem over
the complex numbers: we prove that curves of degrees m and n without
common factors of positive degree intersect at most mn times, counting
multiplicities, in the real projective plane. Second, in the next chapter,
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we combine the result with Bezout's Theorem over the complex num-
bers to deduce that every nonsingular, irreducible cubic has a flex over
the real numbers. It is common in mathematics to deduce a theorem
over the real numbers from a theorem over the complex numbers.

We start by replacing the real numbers with the complex numbers in
our basic definitions. The real projective plane is the standard name for
the projective plane we have considered until now, which is defined
using triples of real numbers. The complex projective plane consists of all
triples (x,y,z) of complex numbers except (0,0,0), where the triples
(kx, ky, kz) all represent the same point as k varies over all nonzero
complex numbers. If we think of triples of real numbers as triples of
complex numbers, the real projective plane is contained in the complex
projective plane, since each point of either plane equals exactly one of
the triples in (1) of Section 2 over the real or complex numbers.

The Euclidean plane generalizes to the complex affine plane, which
consists of all ordered pairs (x,y) of complex numbers. We identify each
point (x,y) of the complex affine plane with the point (x,y, 1) of the com-
plex projective plane. Conversely, we can write any point (x,y, z) in the
complex projective plane with z # 0 in exactly one way as (¥,y’,1) for
complex numbers ¥’ and y': we set ¥’ =z 'x and iy =z 'y. In this way,
we match up the points of the complex affine plane with the points of the
complex projective plane whose last coordinate is nonzero. We call the
remaining points of the complex projective plane—those that have last
coordinate zero—the points at infinity.

A transformation of the complex projective plane is a map

(%y,2) — (¥, y,2)
from the complex projective plane to itself given by equations
X' =ax + by + cz,
Y =dx+ey+ fz,
z' =gx+ hy + kz,

where a-h, k are complex numbers such that these equations can be
solved for x, y, z in terms of ¥, i/, z/. As in Section 3, transformations
are reversible, and a sequence of two transformations is again a transfor-
mation.

Let d be a nonnegative integer. A homogeneous polynomial of degree d
over the complex numbers is a nonzero polynomial F(x,y, z) with com-
plex coefficients such that the exponents of x, y, and z in every term sum
to d. We can write

F(X: Y, Z) = Z 61']'Xiyjzd7i7j (1>

for complex numbers ¢; that are not all zero. We also refer to a homo-
geneous polynomial over the complex numbers as a complex curve. We
think of the complex curve F(x,y,z) as the set of points (x,y,z) in the
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complex projective plane such that F(x,y,z) = 0. We refer to this com-
plex curve as F or as the equation F(x,y,z) = 0 or its algebraic equiva-
lents. We think of the homogeneous polynomials kF(x,y, z) as the same
complex curve for all complex numbers k # 0.

A nonzero polynomial

floy) = ey’ (2)

with complex coefficients e; has degree d if d is the largest value of i 4
for which e; # 0. The homogenization of f(x,y) is the homogeneous poly-
nomial F(x,y, z) in (1) that has the same degree d as f(x,y). Setting z = 1
in the right-hand side of (1) gives the right-hand side of (2), and so the
points (a, b, 1) of the complex projective plane that satisfy the equation
F(x,y,z) = 0 are exactly the points (a, b) of the complex affine plane that
satisfy the equation f(x,y) = 0. We refer to the complex curve F also as f
or as the equation f(x,y) = 0 or its algebraic equivalents.

We must extend the basic properties of intersection multiplicities
from the real to the complex projective plane. Let O = (0, 0) be the origin
of the complex affine plane. We assume that the intersection multiplicity
Io(f,g) of f and g at O is determined for all polynomials f(x,y) and
g(x,y) with complex coefficients so that Properties 1.1-1.6 hold. We
further assume that the intersection multiplicity Ip(F,G) of F and G at P
is determined for all homogeneous polynomials F(x,y,z) and G(x,y, z)
with complex coefficients and all points P of the complex projective
plane so that Properties 3.1 and 3.5 hold.

In Chapter IV, we determine intersection multiplicities for complex
curves as above. We then define intersection multiplicities in the real
projective plane to agree with those in the complex projective plane.
That is, if the polynomials f, g, F, G has real coefficients, and if the point
P has a triple of real numbers as homogeneous coordinates, we assign
the intersection multiplicities Io( f,g) and Ip(F, G) in the real projective
plane the same values as in the complex projective plane. In other
words, curves with real coefficients intersect the same number of times at a
point with real coordinates whether we think of the curves in the real or the
complex projective plane. Accordingly, once we show in Chapter IV that
Properties 1.1-1.6, 3.1, and 3.5 hold for complex curves, it follows auto-
matically that they hold for curves in the real projective plane.

A line in the complex projective plane is a complex curve of degree 1,
namely,

px+qy+rz=0

for complex numbers p, g, ¥ that are not all zero. We claim that we can
transform any line in the complex projective plane to y = 0. By inter-
changing variables, if necessary, we can assume that the coefficient g of
y is nonzero. Using a transformation to multiply y by ¢! (as in (9) of
Section 3) gives px+y+ vz = 0 for real numbers p and r. This line is
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mapped to iy’ = 0 by the transformation

/

¥ =z, Y =px+y+rz, 7z =z,
as in (3) of Section 5.

Theorems 1.7-1.11, 3.4, 3.6, 3.7, and 4.2 follow directly from the inter-
section properties and, along with Definition 3.2 of the intersection
multiplicities I, 5 (f,g), they extend without change from the real to
the complex numbers. Theorems 4.3 and 4.4 extend to the complex
numbers with the change that the polynomial r(x) in these theorems,
which has no roots, is a nonzero constant, by the Fundamental Theorem
of Algebra (Theorem 10.1). Since r(x) has degree 0, the analogue of
Theorem 4.4 over the complex numbers states that any homogeneous
polynomial G(x,y, z) of degree n that does not have y as a factor inter-
sects the x-axis y = 0 exactly n times, counting multiplicities, in the com-
plex projective plane.

Transformations preserve intersection multiplicities and factoriza-
tions of polynomials (by Property 3.5 and the discussion before Theorem
4.5). Together with the two previous paragraphs, this gives the following
extension of Theorem 4.5 to the complex numbers:

Theorem 11.1

In the complex projective plane, let L = 0 be a line, and let G = 0 be a com-
plex curve of degree n. If L is not a factor of G, then L and G intersect exactly
n times, counting multiplicities, in the complex projective plane. O

The line L in Theorem 11.1 is replaced by a curve of any degree in
Bezout's Theorem. The proof of Bezout’s Theorem requires two prelimi-
nary theorems about multiplying homogeneous polynomials. Recall that
homogeneous polynomials are nonzero, by definition.

Theorem 11.2
Let F, G, and H be homogeneous polynomials over the complex numbers.

(i) Then FG is a homogeneous polynomial whose degree is the sum of the
degrees of F and G.
(ii) If FG = FH, then G = H.

Proof
(i) The degree of any term of FG is the sum of the degrees of terms of F
and G. Part (i) follows, once we verify that FG is nonzero.

Among the terms of F' that have the highest power of y, we choose the
term that has the highest power of x, and we call this the leading term of
F. We choose the leading term of G in the same way. The product of the
leading terms of F and G is nonzero (by (24) of Section 10) and it has a
higher power of y or x than the product of any other pair of terms of F
and G. Thus, the product of the leading terms of F and G is a nonzero
term of FG, and so FG is nonzero.
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(ii) We can rewrite the equation FG = FH as
F(G—H) =0. (3)

Part (i) and the equation FG = FH imply that G and H have the same
degree, and so G — H is either a homogeneous polynomial or zero. If it
were a homogeneous polynomial, its product with FF would be nonzero
(by part (i)), which would contradict (3). Thus G — H is zero, and G
equals H. O

Let H(x,z) be a homogeneous polynomial of positive degree that does
not involve y. Setting z = 1 gives a polynomial H(x, 1) in x alone. By the
Fundamental Theorem of Algebra (Theorem 10.1), we can write

H(x, 1) =r(x —w)% - (x — wy)*

for complex numbers r # 0, wy, . .., Wk, and positive integers sy, . . ., S. (If
H(x,1) is a constant, there are no wj;.) Since H is homogeneous and does
not involve y, it follows that

H(x,z) = r(x —wn2)™ - - (x — wyz)%2' (4)

for an integer t > 0. Since H has positive degree, we can move r into one
of the factors on the right-hand side of (4) and write H = L; - - - L, for
lines L; that need not be distinct. Thus, any homogeneous polynomial in
two variables that has positive degree factors over the complex numbers as a
product of lines. We use this observation to derive the second result about
polynomial multiplication that we need.

Theorem 11.3

Over the complex numbers, let F, G, H be homogeneous polynomials such
that H does not involve y or have a factor of positive degree in common
with G. Then any common factor of HF and G is also a common factor of F
and G.

Proof

Let R be a common factor of HF and G. Then R is a factor of G, and we
can write HF = RS for a homogeneous polynomial S. If H has degree 0,
then it is a nonzero constant ¢, and the relation F = ¢~'RS shows that R is
a common factor of F and G.

If H has degree 1, then it is a line. We can transform H to x, as dis-
cussed before Theorem 11.1. Since transformations preserve factori-
zations (as discussed before Theorem 4.5), we can assume that H = x.
Since H has no factors of positive degree in common with G,x is not
a factor of R. If x were not a factor of S either, the terms without x in
R and S would form homogeneous polynomials R’ and S’ in y and z,
and R’S’ would be nonzero (by Theorem 11.2(i)); then RS would have
nonzero terms without x, which would contradict the assumption that
XF = RS. Thus, x is a factor of S, and we can write S = xT for a homoge-
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neous polynomial T. Substituting for S in xF' = RS gives xF' = xRT. It fol-
lows that F = RT (by Theorem 11.2(ii)), and so R is a common factor of
F and G.

Finally, assume that H has degree m > 1. By the discussion before the
theorem, we can write H = LH’ for a line L and a homogeneous poly-
nomial H' of degree m — 1. Since H has no factors of positive degree in
common with G, neither do L and H’. Since R is a common factor of
HF = LH'F and G, it is a common factor of H'F and G, by the previous
paragraph. We continue to reduce the degree of H in this way until we
are done. O

Let I(F, G) be the total number of times, counting multiplicities, that
complex curves F' and G intersect in the complex projective plane. That
is, I(F,G) is the sum of the intersection multiplicities Ip(F,G) for all
points P in the complex projective plane. Since each of the numbers
Ip(F, G) is a nonnegative integer or oo, so is I(F, G).

If F, G, H are complex curves, the equation

Ip(F,GH) = Ip(F,G) + Ip(F, H)

holds at every point P (by Theorem 3.6(v)). Summing these relations for
all points P in the complex projective plane shows that

I(F,GH) = I(F,G) + I(F, H). (5)

Likewise, summing the relation in Theorem 3.6(iv) over all points P of
the complex projective plane shows that

I(F,G) = I(F, G + FH) (6)

if G+ FH is a homogeneous polynomial.

We say that Bezout’s Theorem holds for complex curves F and G of de-
grees m and n if I(F, G) = mn. We want to prove that Bezout's Theorem
holds whenever F and G have no common factors of positive degree.

Theorem 11.1 shows that Bezout’s Theorem holds when F is a line
that is not a factor of G. It follows that Bezout's Theorem holds when F
does not involve y and has no factors of positive degree in common with
G. To see this, suppose first that the degree m of F is positive. F is a
product L - - - L,, of lines L; that need not be distinct, as discussed before
Theorem 11.3. None of the lines L; is a factor of G, by assumption, and so
we have

I(F,G) =I(L; -+ Ly, G)
=I(L,G) + -+ I(Ly, G) (by (5))
=mn

(by Theorem 11.1), as desired. On the other hand, if the degree m of F is
zero, then F' is a nonzero constant and there are no points on the curve
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F = 0. Bezout’s Theorem holds in this case because
I(F,G)=0=0n

(by Theorem 3.6(i) and (iii)).

Let F, G, H be homogeneous polynomials of respective degrees m,
n, p, and assume that H does not involve y and has no factors of posi-
tive degree in common with G. The previous paragraph shows that
I(H, G) = pn. Together with (5), this shows that

I(FH, G) = I(F, G) + pn.

It follows that I(FH, G) = (m + p)n if and only if I(F, G) = mn. Since FH
is a homogeneous polynomial of degree m + p (by Theorem 11.2(i)),
Bezout's Theorem holds for FH and G if and only if it holds for F and G.
In effect, we can disregard factors without y when we prove Bezout's
Theorem.

The degree in y of a homogeneous polynomial F is the largest expo-
nent of y that appears in the nonzero terms of F. We prove Bezout's
Theorem by repeatedly reducing degrees in y, the same technique we
used in Example 1.13 to compute intersection multiplicities. The next
result formalizes this step.

Theorem 11.4

Let F =0 and G =0 be complex curves of respective degrees s and t in y.
Assume that s >t > 0 and that F and G have no common factors of positive
degree. Then there are complex curves F; = 0 and G, = 0 such that F, and
Gy have no common factors of positive degree, the degree of Fy in y is less
than s, the degree of G, in y is t, and Bezout’s Theorem holds for F and G if
and only if it holds for Fy and G;.

Proof
If we take G and factor out homogeneous polynomials of positive degree
that do not involve y, we reduce the degree of G (by Theorem 11.2(i)).
Thus, this process ends, and we can write G = HG;, where H(x,z) is a
homogeneous polynomial that does not involve y, and G; has no factors
of positive degree without y. G; has the same degree ¢ in y as G. Since G
has no factors of positive degree in common with F, neither do H and G;.
Let P(x, z) be the coefficient of y® in F, and let Q(x, z) be the coefficient
of ¥ in G;. P and Q are homogeneous polynomials in x and z that do not
involve y. QF and Py* 'G; are both homogeneous polynomials of degree
s in y in which y° has coefficient PQ. Thus, QF and Py* 'G; are homoge-
neous polynomials of the same degree, and so their difference

Fi = QF — Py"™'G, (7)
is either zero or homogeneous of the same degree as QF. If F; is nonzero,

its degree in y is less than s (by the second-to-last sentence). Since G; has
no factors of positive degree in common with Q(x, z) or F (by the previ-
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ous paragraph), it has no factors of positive degree in common with QF
(by Theorem 11.3). Since (7) implies that any common factor of F; and
G; would also be a factor of QF, the last sentence shows that F; and G,
have no common factors of positive degree. Since G; has positive degree
(because it has degree t > 0 in y), it follows that F; is nonzero. Thus, the
discussion accompanying (7) shows that F; is a homogeneous poly-
nomial whose degree in y is less than s.

Bezout's Theorem holds for F and G if and only if it holds for F and G;
if and only if it holds for QF and G; (by the second-to-last paragraph
before the theorem). This occurs if and only if Bezout's Theorem holds
for F; and Gy (by (6) and (7)). We have seen that F; has degree less
than s in y, Gy has degree t in y, and F; and G; have no common factors
of positive degree. Ul

We can now prove Bezout's Theorem which states that, if complex
curves F and G have no common factors of positive degree, then the
number of times they intersect, counting multiplicities, is the product
of their degrees.

Theorem 11.5 (Bezout's Theorem)

Let F = 0 and G = 0 be complex curves of degrees m and n such that F and G
have no common factors of positive degree. Then F = 0 and G = 0 intersect
exactly mn times, counting multiplicities, in the complex projective plane.

Proof

If F and G both have positive degree in y, we can use Theorem 11.4 to
reduce one of these degrees in y without changing the other. We repeat
this process until one of the curves has degree 0 in y, and we are done by
the third-to-last paragraph before Theorem 11.4. O

Let F and G be complex curves. Bezout's Theorem 11.5 shows that, if
F and G have no common factors of positive degree, they intersect at
only finitely many different points of the complex projective plane. On
the other hand, F and G intersect at infinitely many different points of
the complex projective plane if they have a common factor U of positive
degree. This holds because the next result shows that U has infinitely
many points, and these points lie on both F and G.

Theorem 11.6
Every complex curve of positive degree has infinitely many points.

Proof

Let U(x,y,z) = 0 be a complex curve of positive degree. By interchang-
ing variables, if necessary, we can assume that U has a nonzero term of
positive degree t in y. Setting z = 1 in U(x, y, z) gives a polynomial u(x, y)
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of positive degree t in y. By collecting the terms of u with the same
powers of y, we can write

ulvy) = > p0y,
where p,(x) is nonzero. We can write
p(x) =r(x —wr) - (x —wn)

for complex numbers v # 0 and wy, ..., wy that are not necessarily dis-
tinct (by the Fundamental Theorem of Algebra 10.1). For any complex
number a other than wy, ..., wx, we have pi(a) # 0 (by (24) of Section
10). Then u(a,y) is a polynomial of positive degree in y, and so it has a
root b in the complex numbers (by the Fundamental Theorem 10.1). As
a varies over the complex numbers other than wy, ..., wy, this gives infi-
nitely many points (a, b) of the complex affine plane on u. These corre-
spond to infinitely many points (a, b, 1) of the complex projective plane
on U. O

Theorem 11.6 does not hold over the real numbers: Theorem 5.1 gives
examples of curves of degree 2 that have no points or one point in the
real projective plane.

To derive the analogue of Bezout's Theorem for the real numbers, we
need to relate factorizations of homogeneous polynomials with real coef-
ficients over the real and the complex numbers. If F is a homogeneous
polynomial with complex coefficients, we define its conjugate F to be the
homogeneous polynomial produced by conjugating the coefficients of F.
For example, if F is

(2 4 3i)x%yz + 7xz° — 8iy*,
then F is
(2 — 3i)x%yz + 7xz° + 8iy*.

Theorem 11.7
Let R and S be homogeneous polynomials over the complex numbers, and set
T =RS.

(i) Then we have T =R - S.
(ii) If R and T have real coefficients, then so does S.

Proof

(i) The coefficient of any term of T is a sum of products of coefficients of
R and S. We obtain the corresponding coefficient of T in the same way
from the coefficients of R and S, since sums and products of complex
numbers are preserved by conjugation (by (31) and (32) of Section 10).

Thus, the relation T'= RS implies that T = R - S.
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(ii) Since R and T have real coefficients, we have R=R and T = T.
Together with part (i), this shows that

RS=T=T=R-S=RS.

Then S equals S (by Theorem 11.2(ii)), and so S has real coefficients.
U

The next result shows that a factor over the complex numbers of a
homogeneous polynomial with real coefficients gives rise to a factor
over the real numbers. Over the complex numbers, a nonconstant homo-
geneous polynomial is called irreducible if it does not equal the product
of two nonconstant homogeneous polynomials over the complex num-
bers.

Theorem 11.8

Let F be a homogeneous polynomial with real coefficients. Let U be a homo-
geneous polynomial with complex coefficients that is irreducible and a factor
of F over the complex numbers. Then cither there is a nonzero complex
number k such that kU has real coefficients or else UU is a homogeneous
polynomial with real coefficients that is a factor of F over the real numbers.

Proof
Since U is irreducible over the complex numbers, so is
Uy =a'lU, (8)

where a is the coefficient of a nonzero term of U. U; has a term with co-

efficient 1. If all the coefficients of U; are real, we are done by taking

k = a~'. Thus, we can assume that U; has a coefficient that is not real.
Since U is a factor of F, so is U;, and we can write

F=US (9)

for a homogeneous polynomial S with complex coefficients. Conjugating
both sides of (9) gives
F=T;-8§ (10)

(by Theorem 11.7(i)), where F equals F because it has real coefficients.
Equations (5) and (10) show that

I(Uy,F) =I(Uy, Uh) + I(U4, ). (11)

Since U, is irreducible, it has positive degree (by definition), and so
it contains infinitely many points of the complex projective plane (by
Theorem 11.6). These points lie on F (since U is a factor of F), and so
we have

(UL, F) = o (12)
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(by Theorem 3.6). Since U; does not have real coefficients, it does not
equal U;. It follows that U; and U; are not scalar multiples of each other
(since they have corresponding terms with coefficient 1), and so they
have no common factors of positive degree (since U, is irreducible).
Thus, we have

I(Uy, Uh) < 0 (13)

(by Bezout’s Theorem 11.5).

Combining (11), (12), and (13) shows that I(U;, S) = oo. It follows from
Bezout’'s Theorem 11.5 that U, and S have a common factor of positive
degree. Thus, since U, is irreducible, it is a factor of S, and we can write
S=U,T for a homogeneous polynomial T with complex coefficients.
Substituting this expression for S into (10) gives

F=UUT. (14)
Equation (8) implies that
U=al-T,
and combining this equation with (8) and (14) shows that
F=UUV (15)

for a homogeneous polynomial V with complex coefficients. Because
conjugation interchanges U and U (by (30) of Section 10), it maps UU
to itself (by Theorem 11.7(i)), and so UU has real coefficients. Since F
has real coefficients, (15) and Theorem 11.7(ii) imply that UU is a factor
of F over the real numbers. Il

Theorem 11.8 has the following consequence, which lets us use
Bezout's Theorem 11.5 to study the intersections of curves in the real
projective plane that have no common factors of positive degree over
the real numbers:

Theorem 11.9

Let F and G be homogeneous polynomials with real coefficients. If F' and G
have a common factor of positive degree over the complex numbers, then
they have a common factor of positive degree over the real numbers.

Proof

Let U be a common factor of F' and G over the complex numbers whose
degree is positive and as small as possible. U is irreducible, since, other-
wise, we could replace U with one of its factors. If there is a nonzero
complex number k such that kU has real coefficients, then the fact that
kU is a factor of both F and G over the complex numbers implies that it
is also a factor of both F and G over the real numbers (by Theorem
11.7(ii)). If there is no such complex number k, then UU is a homoge-
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neous polynomial with real coefficients that is a factor of both F and G
over the real numbers (by Theorem 11.8). O

We can now derive an analogue of Bezout's Theorem 11.5 for curves
in the real projective plane.

Theorem 11.10

Over the real numbers, let F' =0 and G = 0 be curves of degrees m and n
such that F and G have no common factors of positive degree over the real
numbers. Then F = 0 and G = 0 intersect at most mn times, counting multi-
plicities, in the real projective plane.

Proof

Since F and G have no common factors of positive degree over the real
numbers, the same holds over the complex numbers (by Theorem 11.9).
Thus, F and G intersect exactly mn times, counting multiplicities, in the
complex projective plane (by Bezout's Theorem 11.5). Theorem 11.10
follows, since F and G intersect the same number of times over the real
or complex numbers at any point of the real projective plane, as dis-
cussed before Theorem 11.1. O

The curves F and G in Theorem 11.10 intersect fewer than mn times
in the real projective plane when at least one of their points of intersec-
tion lies in the complex but not the real projective plane. Theorem 11.10
is illustrated by Theorems 4.4 and 4.5 and the discussion accompanying
Figure 4.1 when one of the curves is a line and by Theorems 5.8 and 5.9
when one of the curves is a conic.

Exercises

11.1. Two polynomial equations with real coefficients are given in each part of
this exercise. At what points of the complex projective plane do they inter-
sect, and how many times do they intersect at each of these points? Use
Bezout’s Theorem 11.5 to check but not to obtain your answers. What is
the total number of intersections, counting multiplicities, in the real pro-
jective plane?

(@ y¥’=rx+1y" =2 -1 (b) y=2° y* =
(c) ¥*+4y> =1,%* + 4y* = 4. (d) xy=1,y=x"
(e) ¥y=3x -1, y=x>+1. (f) ¥y=1,y=—-x"

11.2. Follow the directions of Exercise 11.1 for the pairs of equations in Exercise
5.7.

11.3. Adapt the proof of Theorem 5.1 to prove that any two irreducible complex
curves of degree 2 can be transformed into each other.
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11.4.

A circle is a curve in the real projective plane given by an equation
(x =R+ (y—k)?* =17, (16)

where h, k, r are real numbers with r > 0.

(a) Prove that (16) gives a complex curve that contains exactly two points
at infinity, namely (1,7,0) and (1, —i,0). (These two points are called
circular points.)

(b) Prove that a curve in the real projective plane is a circle if and only if
it has degree 2, it contains three noncollinear points in the Euclidean
plane, and the complex curve with the same equation contains the
points (1,7,0) and (1, —i, 0).

(c) Deduce from part (b) and the extension of Theorem 5.10 to the com-
plex projective plane that three noncollinear points in the Euclidean
plane lie on a unique circle.

. Let K; and K, be two circles that intersect at least once in the Euclidean

plane. Prove that K; and K, intersect exactly twice, counting multi-
plicities, in the Euclidean plane by using Exercise 11.4, the extension of
Theorem 5.8 to the complex projective plane, and the fact that any circle
can be transformed in the real projective plane into y = x2.

. Consider the following result (Figure 11.1):

Figure 11.1

Miquel’s Theorem

In the Euclidean plane, let A, B, C be three noncollinear points. Let A’ be a
point on line BC other than B and C, let B' be a point on line CA other than C
and A, and let C' be a point on line AB other than A and B. Let K4, Kp, K¢ be
the circles determined by the three triples of points A, B', C'; A', B, C'; A', B/, C.
Then the circles K5, Kg, Kc have a unique point P of the Euclidean plane in
common.

Prove Miquel’s Theorem as follows. Let Fg be the cubic formed by the
circle Kz and the line CA, and let F¢ be the cubic formed by the circle K¢
and the line AB. Use Theorem 6.4 to “peel off” the line BC from the inter-
section of Fp and F¢, and deduce Miquel’s Theorem from Exercises 11.4
and 11.5.

. In the notation of Miquel’s Theorem, use that result and its proof and

Theorem 4.11 to prove that K, contains A’ if and only if Kz and K¢ are
tangent to the same line at A’. Tllustrate this result with a figure.
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11.8. In the notation of Miquel’s Theorem, let K be the circle determined by the

11.10.

three points A, B, C. Prove as follows that A, B/, C’ are collinear if and
only if P lies on K, and illustrate this result with a figure. If A’, B/, C' lie
on a line L, prove that P lies on K by using Theorem 6.4 to ‘“peel off” L
from the intersection of the cubics Fp and F¢ in Exercise 11.6. If P lies on
K, use Exercise 11.4 and Theorem 6.1 to “peel oft” K from the intersection
of Fg and F¢.

. In the Euclidean plane, let ABC be a triangle, and let Q be a point (Figure

11.2). Let A, B/, C' be the feet of the perpendiculars from Q to BC, CA, AB,
respectively. Let K be the circle determined by the three points A, B,C—
the circumcircle of triangle ABC. Prove that A', B', C' are collinear if and
only if Q lies on K. Use Exercises 11.6 and 11.8 and the following basic
result from Euclidean geometry: If S, T, U are three points in the Eucli-
dean plane, then T lies on the circle with diameter SU if and only if
/. STU = 90° (Figure 11.3). Cases where any of the points A’, B, C’ equals
A, B, or C require separate consideration.

(Because the points A, B', C" are not all equal, they determine a unique
line when Q lies on K. This line is called the Simson line of the point Q
and the triangle ABC.)

Figure 11.2 Figure 11.3

In the Euclidean plane, let K;, Ky, K3 be three circles such that any two
of them intersect at two points (Figure 11.4). Let Ly, L;, L3 be the lines

Figure 11.4
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Exerct

through the two intersection points of K; and K3, K3 and K;, and K; and
K;, respectively. Prove that the lines L;, Ly, L3 are concurrent or parallel
in the Euclidean plane by using Theorem 6.1 and Exercise 11.4 to “peel
oftf” Ky from the intersection of the cubic formed by K; and L, and the cu-
bic formed by Kz and L.

ses 11.11-11.20 use the fact that Theorems 4.6-4.8 and the definitions of sin-

gular points, tangent lines, nonsingular curves, and flexes extend to the complex pro-

jective

plane without change. A complex cubic is a complex curve of degree 3. The

results of Section 9 on addition of points from Theorem 9.1 through Theorem 9.7
extend without change to the complex numbers.

11.11.

11.12.

Over the real or complex numbers, let C be a nonsingular, irreducible
cubic or complex cubic. Assume that C has three noncollinear flexes O, P,
Q. Add points of C with respect to O as in Definition 9.3. Use Exercise 9.2
(which extends without change to the complex numbers) to prove that the
nine points in Figure 11.5 are flexes of C and that no two of these points
are equal.

o 0 20
P P+0Q P+20
2P 2P +Q 2P +20

Figure 11.5

In the notation of Exercise 11.11, use Exercise 9.2(a) (which extends

without change to the complex numbers) to prove that the following

twelve triples of points in Figure 11.5 are collinear:

(i) The three horizontal triples—O, Q, 2Q; P, P+ Q, P+ 2Q; 2P, 2P+ Q,

2P +2Q.

(ii) The three vertical triples—O, P, 2P; Q, P+ Q, 2P+ Q; 2Q, P+ 2Q,
2P 4 2Q.

(iii) The three triples of points on the lines in Figure 11.6—0O, P+ Q,
2P +2Q; Q, P+2Q, 2P; 2Q, P, 2P + Q.

(iv) The three triples of points on the lines in Figure 11.7—0, 2P + Q,
P+2Q; P, Q,2P+2Q; 2P, P+ Q, 2Q.

P+20 _—

P P+Q/P+2Q

P PPre b2 2P/2P+Q 2P+20

~_ ?Q\ 0 0 20
~

Figure 11.6 Figure 11.7
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11.13.

11.14.

11.15.

11.16.

11.17.

11.18.

III. Cubics

(The triples in (iii) and (iv) represent the six ways to choose one point
from each row and column in Figure 11.5, in analogy with the definition
of determinants in (22) of Section 12.)

In the notation of Exercise 11.11, assume that P = (1,0,0), 2P = (0,1, 0),
Q =1(0,0,1), and 2Q = (1,1,1). Let w be given by (62) of Section 10. Use
Exercises 10.3 and 11.12 to prove that the nine points in Figure 11.5 are

(1,1,0),  (0,0,1),  (1,1,1),
(1,0,0),  (1,4,1),  (0,d,1), (17)
(0,1,0),  (1,d.d),  (1,0,d),

respectively, where d is either @ or —a?.
Use Exercises 11.11 and 11.13 and Theorem 3.4 to prove that every non-
singular, irreducible cubic in the real projective plane has at most three flexes.

(a) Find the equation of a transformation that fixes (1,0,0) and (0,1, 0)
and interchanges (0,0,1) and (1,1, 1).
(b) Prove that the transformation in (a) interchanges the nine points in

(17) for d = w with the nine points in (17) for d = —w?.

(a) Can a reducible complex curve of positive degree be nonsingular in
the complex projective plane? Justify your answer.

(b) Over the real numbers, can a reducible curve of positive degree be
nonsingular in the real projective plane? Justify your answer.

Let w and v be complex numbers other than 0 and 1. In each part of this
exercise, use Exercise 8.9 (which extends without change to the complex
numbers) to determine when there is a transformation over the complex
numbers that fixes (0,1, 0) and maps

yzzx(x—l)(x—w) (18)
to
yzzx(xfl)(va). (19)

(a) Prove that there is such a transformation fixing (0,0, 1) and (1,0, 1) if
and only if v = w.

(b) Prove that there is such a transformation mapping (1,0,1) to (0,0,1)
and (0,0,1) to (1,0,1) ifand only if v =1 — w.

(c) Prove that there is such a transformation fixing (0,0, 1) and mapping
(w,0,1) to (1,0,1) if and only if v = 1/w.

(d) Prove that there is such a transformation mapping (w, 0, 1) to (0,0, 1)
and (0,0,1) to (1,0,1) if and only if v = (w — 1)/w.

(e) Prove that there is such a transformation mapping (1,0,1) to (0,0, 1)
and (w,0,1) to (1,0,1) ifand only if v = 1/(1 — w).

(f) Prove that there is such a transformation mapping (w, 0, 1) to (0,0, 1)
and fixing (1,0,1) if and only if v = w/(w — 1).

Let w and v be complex numbers other than 0 and 1. If a complex cubic
can be transformed into (18), prove that it can also be transformed into
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(19) if and only if v is one of the numbers

1 w—1 1 w
) liw: ) 5 B .
w w 1—w w—1

Use Theorem 8.1(i), Exercise 8.7, and either Theorem 8.2 or Exercise 8.9,
which all extend without change to the complex numbers, and Exercise
11.17. (Exercise 12.29 shows that a complex cubic is nonsingular if and
only if it can be transformed into (18) for a complex number w other
than 0 and 1.)

11.19. (a) Adapt the proof of Theorem 8.4 to prove that a complex cubic is sin-
gular and irreducible if and only if it can be transformed into

yr =8 or Yy =x*(x+1). (20)

(b) Prove that no complex cubic can be transformed into both of the equa-
tions in (20).

11.20. (a) For any integer n > 4, find a homogeneous polynomial F of degree n
with real coefficients and a line L with real coefficients such that F is
tangent to L in the complex projective plane but not the real projec-
tive plane.

(b) Can part (a) be done for any integer n < 3?

11.21. Each part of this exercise gives the equation of a conic K in the real pro-
jective plane. Define a focus of K as in Exercises 7.22 and 7.23. The given
equation also determines a complex curve K'.

In the complex projective plane, let L be a line other than z = 0 that
contains a circular point (1, +i,0) (as in Exercise 11.4(a)). Using Defini-
tion 4.9 over the complex numbers to determine when L is tangent to K’,
prove that L is tangent to K’ if and only if L contains a focus of K.

(a) K isx%/a®+ y*/v =1 for real numbers a > 0 and v # 0 with a? > v.
(b) K is 4py = x? for a real number p # 0.

11.22. In the Euclidean plane, prove that any three tangents of a parabola K
form a triangle T whose vertices lie on a circle through the focus of K.
Use Exercises 11.4(b) and 11.21(b) to apply Exercise 7.17 over the com-
plex numbers where A, B, and C are the vertices of T, A’ is the focus of
K, and B’ and C’ are the circular points (1, +1,0).

§12. Hessians

We finish characterizing nonsingular, irreducible cubics over the real
numbers in this section. We prove that they all have flexes and so are
determined by Theorem 8.3.

We consider only polynomials and curves with real coefficients in this
section except where we explicitly state otherwise. We start by defining
the first and second partial derivatives of polynomials in x and y. We
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use these to characterize the flexes and singular points of curves in the
Euclidean plane. By translating these results into homogeneous coordi-
nates, we associate each homogeneous polynomial F with a quantity H
called the Hessian of F. H is either zero or a homogeneous polynomial,
and the flexes and singular points of F' are exactly the points of F that
satisfy the equation H = 0.

When C is a nonsingular, irreducible cubic, we prove that its Hessian
H is a cubic distinct from C. It follows from Bezout’s Theorem 11.5 and
Theorem 11.9 that C and H intersect nine times, counting multiplicities,
in the complex projective plane. Because the number nine is odd, we de-
duce that C and H intersect in the real projective plane by considering
the map of the complex projective plane that conjugates the homoge-
neous coordinates of every point. Thus, C has a flex in the real projective
plane, as desired.

Let f(x,y) be a polynomial with real coefficients. The first partial deriv-
ative f, of f with respect to x is the derivative of f as a function of x when
y is held constant. Likewise, the first partial derivative f, of f with re-
spect to y is the derivative of f as a function of y when x is held constant.

For example, suppose that

flxy) = x* 4+ 7x%y — 9xy* + 5y — 4.
Treating y as a constant and differentiating with respect to x gives
fo = 4x° + l4xy — 9y*. (1)
Treating x as a constant and differentiating f with respect to y gives
fy = 7x* — 363y + 5.

We obtain the values fi(a,b) and f,(a,b) of the partial derivatives at
a point (a,b) of the Euclidean plane by setting x = a and y = b in the
expressions for the partial derivatives. For instance, setting x = 2 and
y=—1in (1) gives

ful2,—1) = 4(2%) +14(2)(-1) —9(-1)* =32 — 28 — 9 = —5.

We can use partial derivatives to identify the singular points of a
curve in the Euclidean plane.

Theorem 12.1

Let (a,b) be a point of the Euclidean plane on a curve f(x,y) = 0. Then f is
nonsingular at (a, b) if and only if fi(a,b) and f,(a, b) are not both zero. In
this case, the tangent to f at (a, b) is the line

fla,b)(x — a) + fy(a,b)(y — b) = 0.

Proof
By Theorem 4.10, we can write

flxy) =s(x—a) +tly —b) + Y ejlx — a)'(y - b),
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where i+j > 2 for every term in the summation. Treating y as a con-
stant and differentiating with respect to x gives

fe=s+)_ iegx—a) ' (y—D).

Because (i — 1) +j > 1 for every term in the summation, at least one of
the exponents i — 1 or j is positive in each term. Thus, the summation
has value zero when we set x =a and y = b, and we have fi(a,b) =s.
Likewise, we have f,(a, b) = t. Thus, the theorem follows from Theorem
4.10. ]

If u and v each represent either x or y, we define the second partial
derivative f,,, of a polynomial f(x,y) with respect to u and v to be the re-
sult of differentiating f, with respect to v. For example, differentiating
the quantity in (1) with respect to x gives fi = 12x% 4 14y, and differen-
tiating (1) with respect to y gives f,, = 14x — 36y°.

Flexes are generalized inflection points. In single-variable calculus,
the inflection points of a twice-differentiable function y = f(x) occur
only at points where f”(x) = 0. The next result extends this to all alge-
braic curves in the Euclidean plane by using second partial derivatives
to characterize flexes and singular points.

Theorem 12.2
Let (a, b) be a point of the Euclidean plane on a curve f(x,y) = 0. Then (a, b)
is a flex or a singular point of f if and only if

fof2+ fu £2 = 2 fofy (2)

takes the value zero at (a, b).

Proof
If (a, b) is a singular point of f, then f; and f, are both zero at (a,b) (by
Theorem 12.1), and so the quantity in (2) is zero at (a, b). Thus, we can
assume that f is nonsingular at (a,b). In this case, we must prove that
(a,b) is a flex of f if and only if the quantity in (2) is zero at (a, b).

By Theorem 4.10, we can write

fx,y) =s(x—a) +tly — b) + u(x — a)* + v(y — b)*

+wx—a)ly—b)+ Y ex—a)ly—b), (3)
where s and t are not both zero, f is tangent to the line
s(x—a)+ty—b)=0 (4)

at (a,b), and i +j > 3 for every term in the sum. Because the quantity in
(2) is symmetric in x and y, we can interchange x and y, if necessary, to
ensure that ¢ # 0.

Solving (4) for y gives

s
y:bf?(x—a).
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Substituting the right-hand side of this equation for y in (3) is the same as
substituting —(s/t)(x — a) for y — b. This substitution takes the right-hand
side of (3) to

(u+f§—)x—a +§:%< ) —a)'", (5)

where i +j > 3 for every term in the summation.

Factoring (x — a)? out of (5) leaves x — a as a factor of every term of
the rightmost summation (since i +; > 3 in the summation). Thus, (5)
has the form (x — a)?h(x), where h(x) is a polynomial such that

Vs ws
h(a):u—kt—z—T. (6)

If h(a) # 0, then f(x) intersects the tangent in (4) twice at (a,b) (by
Theorem 4.2). If h(a) = 0, but the polynomial in (5) is nonzero, then
the largest power of x — a we can factor out of (5) is at least three. Then
f intersects its tangent at least three times at (a,b) (by Theorem 4.2).
Finally, if the polynomial in (5) is zero, then the tangent at (a,b) is a
factor of f (by Theorem 1.9(ii)), and f intersects its tangent infinitely
many times at (a, b) (by Theorem 3.6(vi) and Definition 3.2). In short, f
intersects its tangent at least three times at (a, b) if and only if h(a) = 0.
Thus, multiplying (6) by t? shows that (a, b) is a flex of f if and only if

ut® + vs* — wst = 0. (7)

The proof of Theorem 12.1 shows that
fla,b) =s, (8)
fyla,b) =t. (9)

Differentiating (3) with respect to x gives

fllx,y) = s+ 2u(x —a) + w(y — b) + Z iej(x —a)"(y —b).
Differentiating this equation with respect to x and y gives

fux(X, 1) —2u+z @1] X_a) (y_b>j7 (10)
fulxy) =w+> deyx —a) " (y =Dy~ (11)

In each term of the rightmost summations in (10) and (11), either x — a
or y — b has a positive exponent, since i 4+j > 3. Thus, substituting x = a
and y = b in (10) and (11) makes the summations zero and shows that

fula,b) = 2u, (12)
fwla,b) =w. (13)
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Interchanging x and y in (3) and (12) shows that
fuyla, b) = 2v. (14)
Equations (8), (9), and (12)-(14) show that (7) holds if and only if
S} + 3o f2 — ffefy
equals zero at (a, b). Multiplying this quantity by 2 gives the quantity in

(2). Thus, the discussion before (7) shows that (a, b) is a flex of f if and
only if the quantity in (2) is zero at (a, b). O

We translate Theorem 12.2 into homogeneous coordinates in order to
extend it to the real projective plane. Let

Flxy,2) =Y  egxy'z" (15)
be a homogeneous polynomial of degree d with real coefficients. The
homogeneity of F means that

i+j+k=d (16)

for every term of F. The partial derivatives Fy, Fy, F, of F are the results of
differentiating F' with respect to the given variable by holding the other
two variables constant:

Fy= Z iepx' "y zk, (17)
F, = Zjeijkxiyj_]zk, (18)
F, = z keijkxiyjzkfl. (19)
Each partial derivative is either zero or a homogeneous polynomial of

degree d — 1.

We define the partial derivatives of the zero polynomial to be zero.
Equations (17)-(19) hold also in this case, where all the coefficients e
are zero.

If F is given by (15), and if u and v are chosen from the variables x, y,
z, the second partial derivative F,, is the partial derivative of F,, with re-
spect to v. For example, differentiating (17) with respect to y gives

Fy = Z jex' "y 71z,
Differentiating (18) with respect to x gives the same result, and so we
have F, = Fy,. By symmetry, we have the three equations
Fyy = Fyw Fyz = Fov Fyz = Fyy. (20)
We claim that the relation
xFy + yF, + zF, = dF (21)

holds for any homogeneous polynomial F' of degree d with real coeffi-
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cients. In fact, (17)-(19) show that the left-hand side of (21) equals
X Z iepxyz" +y Z jesx'y 'z 4 z Z kegx'y'z"!
— Z iepx'y'z* + Z jegx'y'z* + Z kegrx'y’z*
= (i+j+Reaxy’z" =) deyx'y’z"  (by (16))
=d ) egxXy/z" =dF (by (15)).

Equation (21) also holds when F is the zero polynomial —whose degree is
undefined—and d is any integer, since both sides of the equation are
Zero.

We use determinants as a bookkeeping device to simplify algebra. We
define the determinant

a b c
d e f|=aei+ bfg+ cdh — afh — bdi — ceg, (22)
g h i

where a-i are real numbers or polynomials with real coefficients. We
call a-i the entries of the determinant. The rows are the horizontal triples
of entries on the left-hand side of (22): a, b, c is the first row, d, ¢, f is the
second, and g, h, i is the third. The columns are the vertical triples of
entries: a, d, g is the first column, b, e, h is the second, and ¢, f, i is the
third. The right-hand side of (22) is more memorable if one notes that
the first three terms are the products of the entries joined by lines in
Figure 12.1, and the last three terms are the products of the entries
joined by lines in Figure 12.2.

Theorem 12.3
(i) For any values of a-i, g'-i', we have
a b c a b c a b ¢
a e f |=1ld e f|+|d e f]| (23)
g+g h+n i+ g h i g n o7

(ii) If the third row of a determinant is a multiple of the first or second row,
the value of the determinant is zero.

S )

Figure 12.1 Figure 12.2
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(iii) The value of a determinant is unchanged by adding a multiple of the
first or second row to the third.

(iv) When each entry in a determinant is multiplied by k, the value of the
determinant is multiplied by k.

Proof
(i) Equation (22) shows that the left-hand side of (23) equals
ae(i+1i) +bf(g+g) +cdh+R)—af(h+h)—bd(i+1)
—ce(g +g').
Expanding each expression and collecting the terms without primed en-
tries gives
aei + bfg + cdh — afh — bdi — ceg
+ aei’ + bfg’ + cdh' — afh' — bdi' — ceg’.
This is the right-hand side of (23).
(ii) Taking the third row in (22) to be k times the first gives

a b c
d e f|=aekc+ bfka+ cdkb — afkb — bdkc — ceka,
ka kb ke

and the terms on the right cancel to zero. Similarly, taking the third row
in (22) to be k times the second gives

a b c
d e f |=aekf+ bfkd + cdke — afke — bdkf — cekd,
kd ke kf

and again the terms on the right cancel to zero.
(iii) If we add k times the first row to the third, we obtain
a b c a b ¢ a b c a b c
a e f |=|d e fl+|d e f|=|d e f|,
g+ka h+kb i+ke g h i ka kb kc g h i
by parts (i) and (ii). It follows in the same way that the determinant re-
mains unchanged when we add a multiple of the second row to the third.

(iv) If we multiply each of the entries a-i in (22) by k, the right-hand
side of the equation is multiplied by k. ]

We claim that

Q.

L
I

o & o

- o o
= 0

~.



218 III. Cubics

for any values of a-i. Each of the rows a, b, ¢; d, e, f; g, h, i on the left-
hand side of (24) is a column of the right-hand side. Thus, (24) shows
that determinants are unaffected by interchanging rows and columns. To
verify (24), note that (22) shows that the right-hand side of (24) equals

aei + dhc + gbf — ahf — dbi — gec.

Since this equals the right-hand side of (22), equation (24) holds.

By Theorem 12.3(iii), the value of the left-hand side of (24) is
unchanged if we add a multiple of the first or second row to the third.
Looking then at the right-hand side of (24), we see that the value of any
determinant is unchanged if we add a multiple of the first or second column to
the third.

Let F be a homogeneous polynomial with real coefficients. We define
the Hessian H of F by setting

Foo Fy Fu
H=|F, F,y Fg| (25)

Fo Fyz I
If F has degree d, each entry on the right-hand side of (25) is either zero
or homogeneous of degree d — 2. Thus, (22) and (25) imply that H is

either zero or homogeneous of degree 3(d — 2).
If we use (22) to expand (25), we obtain

H = FFyyFo + 2P FyFr; — FaFo, — FyFay — FiFo (26)
Interchanging x and z on the right-hand side of this equation gives
FooFyyFu + 2F2yFypFo — FooFoy — FyyF2, — FioFyy.
This equals the right-hand side of (26) (by 20)). Likewise, interchanging
y and z on the right-hand side of (26) gives
FuFoFyy + 2FFoyFyy — FuFo — FiuFy — FyFo

This also equals the right-hand side of (26) (by (20)). In short, the Hessian
remains unchanged when z is interchanged with x or y.

We can now show that the Hessian is the analogue in homogeneous
coordinates of the quantity in (2).

Theorem 12.4
Let P be a point on a curve F of degree greater than 1 in the real projective
plane. Then P is a flex or a singular point of F if and only if P satisfies the
equation H = 0.

Proof
At least one of the homogeneous coordinates of P is nonzero. We have
seen that H remains unchanged if we interchange z with x or y. Such
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an interchange also preserves flexes and singular points (by Property
3.5). Thus, we can assume that the last coordinate of P is nonzero. Divid-
ing by this coordinate, we can assume that P = (a, b, 1) for real numbers
a and b. Let F have degree d > 1.

To find the value of H at (a,b, 1), we evaluate all the second partial
derivatives on the right-hand side of (25) at (a,b,1). We add a times the
first row and b times the second row to the third. This does not change
the value of the determinant in (25), by Theorem 12.3(iii). The first
entry in the third row becomes

AFyx 4+ bFy + Fy,

evaluated at (a, b, 1). This quantity equals (d — 1)F, at (a, b, 1), as we see
by replacing F with F, and (x,y,z) with (a,b,1) in (21). (Note that we
have replaced d in (21) with d — 1 because F, has degree d — 1 or is 0.)
Similarly, the second entry in the third row of the determinant in (25)
becomes

aFyy + bFyy + Fy, = aFy, + bFy, + Fy,  (by (20))
= (d=1)F, (by (21))

evaluated at (a,b,1). Likewise, the final entry in the third row of the
determinant in (25) becomes

aFy, + bez + F,, = aF, + bFZy +F,=(d—-1)F,
evaluated at (a, b, 1) (by (20) and (21)). In short, we have

FXX ny EYZ
H= Fy Fyy Iy (27)
(d-1)F, (d—1)F, (d—1)F,
at (a,b,1).
The value of this determinant is unchanged if we add a times the first
column and b times the second column to the third (by the second para-
graph after the proof of Theorem 12.3). As in the previous paragraph, the

first two entries in the third column become (d — 1)Fy and (d — 1)F, eval-
uated at (a, b, 1). The last entry in the third column becomes

(d—1)(aF, + bF, + F,) = (d — 1)dF

evaluated at (a, b, 1) (by (21)), and F(a, b, 1) is zero (because P lies on F').
Thus, we have
Fxx ny (d - 1)FX
H = Fyy Fyy (d— l)Fy
(d—=1)F, (d—1)F, 0
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at (a, b, 1). Using (22) to evaluate this determinant gives
H = (d —1)*(2FyFyFy — FuF,) — FyFy) (28)

at (a,b,1). In short, we have used the algebraic properties of detetermi-
nants to eliminate differentiation with respect to z from the Hessian so
that we can interpret the Hessian in the Euclidean plane.

We set f(x,y) = F(x,y,1). We claim that setting z = 1 in Fy, F, Fx, ny,
Fyy gives fy, fy, fo fus fyy- If 50, the right-hand side of (28) is —(d —1)2
times the quantity in (2). Since d > 1, this means that H equals 0 at
(a,b,1) if and only if the quantity in (2) equals zero at (a, b).

To prove that

flxy) = Fu(x,y,1), (29)
we write
F(x,y,z Zexyzd” (30)
Setting z =1 gives
Yy = Z X'y’ . (31)
Differentiating (30) and (31) with respect to x gives
NERTY: Z iex Yz (32)
and
x,y) = Z ieix 1y (33)

Setting z =1 in the right-hand side of (32) gives the right-hand side of
(33), and so (29) holds. Likewise, we have

f}/(xry> :Fy(xay:1>' (34>
Similarly, setting z =1 in
Fxx = Z l(l - l)eijxi_Zyjzd_i_j
gives
Z i(i— 1)61'1'Xi72yj = fr-
By symmetry, setting z =1 in F,, gives f,,. Finally, setting z =1 in
Fy = Z jegxy 1z
gives
> ier ™'y = fy

We have proved that H = 0 at (a, b, 1) if and only if the quantity in (2)
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is zero at (a,b). This happens if and only if (a, b) is a flex or a singular
point of f (by Theorem 12.2). We are done by the first paragraph of the
proof. O

We show next that the Hessian H of a nonsingular, irreducible cubic C
is not a scalar multiple of C over the real numbers. It follows from this,
Bezout’s Theorem 11.5, and Theorem 11.9 that C and H intersect nine
times in the complex projective plane.

Theorem 12.5

Over the real numbers, if C =0 is a nonsingular, irreducible cubic, its
Hessian H is a homogeneous polynomial of degree 3 that is not a scalar
multiple of C.

Proof

We claim first that C = 0 contains at least one point in the real projective
plane. If it contains the point (1,0, 0), we are done. If not, x> has nonzero
coefficient in C. Thus, setting y and z equal to 1, for example, gives a
polynomial C(x,1,1) of degree 3 in x. This polynomial has at least one
root 7 in the real numbers (by the discussion accompanying (13) of
Section 8), which gives a point (r,1,1) of the real projective plane on
the curve C = 0.

Second, we claim that C has a point that is not a flex. We have seen
that C contains at least one point. If that point is not a flex, the claim
holds. If it is a flex, then, by using Theorem 8.3 and replacing C with its
image under a transformation, we can assume that C has the form

yr =20+ fa’ 4 gx (35)

for real numbers f and g such that g # 0. The y-axis x = 0 is tangent to C
at the origin and contains the point (0, 1, 0) that lies at infinity on C (by
Theorem 8.2). It follows that C intersects its tangent at the origin exactly
twice there (by Theorem 4.5 and Definition 4.9), and so the origin is a
point of C that is not a flex.

Because it has a point that is not a flex, C is not a factor of its Hessian
H (by Theorem 12.4). Taking d = 3 in the discussion after (25) shows
that H is either zero or homogeneous of degree 3. Thus, H is homoge-
neous of degree 3 and is not a scalar multiple of C. O

The ordered triples (a, b, c) and (ta, th, tc) represent the same point in
the complex projective plane for every nonzero complex number ¢t and
every triple a, b, ¢ of complex numbers not all zero. If we conjugate the
coordinates, the triples still represent the same point, since the coordi-
nates of (fa, tb, tc) are the coordinates of (a,b,¢) multiplied by  (by (32)
of Section 10). Moreover, the fact that a, b, ¢ are not all zero implies
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that a, b, ¢ are not all zero. Thus, to any point P = (a, b, ¢) in the complex
projective plane, we can associate a point P = (a,b,¢).

We defined the conjugate of a complex homogeneous polynomial be-
fore Theorem 11.7. Let P = (a, b, c¢) be a point in the complex projective

plane, and let F be a complex curve. The equations
F(a,b,c)=0 and  F(a,b,c) =0

are equivalent because each is the conjugate of the other (by (30)-(32) of
Section 10). Thus, P lies on F if and only if P lies on F. This suggests our
final intersection property, which states that conjugation preserves inter-
section multiplicities. We derive this property in Section 15.

Property 12.6
If F and G are complex curves and P is a point in the complex projective
plane, then we have

We can now prove that every nonsingular, irreducible cubic C has a
flex in the real projective plane. Bezout's Theorem 11.5 and Theorem
11.9 imply that C intersects its Hessian nine times, counting multiplic-
ities, in the complex projective plane. Because the nine intersections
are interchanged in pairs by conjugation, the fact that nine is odd im-
plies that at least one intersection is fixed by conjugation and lies in the
real projective plane.

Theorem 12.7
Every nonsingular, irreducible cubic in the real projective plane has a flex.

Proof

Let C be a nonsingular, irreducible cubic with real coefficients, and let H
be its Hessian. C and H have no common factors of positive degree over
the real numbers, since C is irreducible and not a scalar multiple of H
(by Theorem 12.5). Thus, C and H have no common factors of positive
degree over the complex numbers (by Theorem 11.9). Therefore, since C
and H are homogeneous polynomials of degree 3 (by Theorem 12.5),
they intersect 3-3 =9 times, counting multiplicities, in the complex
projective plane (by Bezout's Theorem 11.5).

Assume that C and H intersect at a point Q in the complex projective
plane such that Q # Q. The map P — P takes Q back to Q (by (30) of
Section 10) and thereby pairs Q and Q. Because C and H have real
coefficients, they intersect the same number of times at Q and Q (by
Property 12.6). Thus, the paired points Q and Q contribute an even
number to the total number of times that C and H intersect in the com-
plex projective plane.
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The total number of times that C and H intersect in the complex
projective plane is nine, an odd number (by the first paragraph of the
proof). Together with the previous paragraph, this implies that C and H
intersect at least once at a point R in the complex projective plane such
that R = R.

The homogeneous coordinates of R are complex numbers that are not
all zero. By interchanging z with x or y, if necessary, we can assume that
the last coordinate c of R is nonzero. Multiplying the coordinates of R by
¢! lets us write R = (a, b, 1) for complex numbers a and b. The discus-
sion after the proof of Theorem 12.5 shows that the relationship R = R
holds for every choice of homogeneous coordinates for R. Thus, there is
a complex number t # 0 such that multiplying the coordinates of (a, b, 1)
by t gives the coordinates of (@b, 1). Since both triples have last coordi-
nate 1, we must have t = 1. Then we have @ = a and b = b, and so a and
b are real numbers (by (29) of Section 10). Thus, R = (a, b, 1) is a point
of the real projective plane that lies on both C and H. Because C has no
singular points, by assumption, R is a flex of C (by Theorem 12.4). [

We have now determined all irreducible cubics in the real projective
plane. Combining Theorems 12.7 and 8.3 shows that a cubic is non-
singular and irreducible if and only if it can be transformed into

yr=xx—1)(x —w) or  yr=x(x*+kx+1)

for real numbers w > 1 and —2 < k < 2. Theorem 8.4 characterizes the
singular, irreducible cubics.

Exercises

12.1. In each part of this exercise, we give a curve C with an unspecified con-
stant term k, and we give a point R in the Euclidean plane. First, de-
termine the value of k so that C contains R. Then use Theorem 12.1 to
determine whether C is nonsingular at R and, if so, to write the tangent
at R in one of the forms y = mx+ b or x = a.

(
Xt — Xy 44y =k; (2,1).
1

12.2. Each part of Exercise 12.1 gives a curve with an unspecified constant term
k. For what values of k does the curve have a singular point in the Eucli-
dean plane?
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12.3.

12.4.

12.5.

12.6.

12.7.

12.8.

III. Cubics

Let F be a homogeneous polynomial of positive degree with real coeffi-

cients, and let (a, b, ¢) be a point in the real projective plane.

(a) Prove that (a,b,c) is a singular point of F" if and only if Fy, Fy;, and F,
are all zero at (a,b,c).

(b) If F is nonsingular at (a, b, c), prove that

Fy(a,b,c)x+ Fy(a,b,c)y + F.(a,b,c)z =0

is the tangent at (a, b, c).
(See (21), (29), and (34) and Theorem 12.1.)

For any real number w, prove that the curve
(x4+y+2)?° =wxyz

in the real projective plane is nonsingular if and only if w is not equal to 0
or 27. (These cubics are discussed in Exercises 8.20, 8.31(c), and 12.9.)

For any real number ¢, prove that the curve
P4y 28 =tyz

in the real projective plane is nonsingular if and only if ¢t # 3. (These
cubics are discussed in Exercises 8.21-8.25, 8.31(d), 12.9, and 12.11.)

For any real number m, prove that the curve
X’y +xy? + 28 = mayz

in the real projective plane is nonsingular if and only if m # 3. (These
cubics are discussed in Exercises 8.26-8.28, 8.31(e), and 12.12.)

Let f(x,y) = y* — q(x), where
qlx) =x* +ax* +bx+c (36)

for real numbers a, b, c. Let h(x,y) be the quantity in (2).
(a) Show that

h(x,y) = —4q"(x)g(x) + 24'(x)* (37)

at any point (x,y) on the graph of f in the Euclidean plane, where
q'(x) and q"(x) are the first and second derivatives of g in the sense
of single-variable calculus.

(b) Use (36) and ideas of single-variable calculus to prove that the right-
hand side of (37) goes to —o0 as x goes to +o0.

(c) Letr be the largest root of g(x). If x — r is not a repeated factor of g(x),
prove that h(r,0) > 0 and that g(x) > 0 for all x > r. (See (36) and (37)
and Exercise 8.1.)

If the curve f(x,y) in Exercise 12.7 is nonsingular, use parts (b) and (c) of
that exercise and single-variable calculus to deduce that f has at least two
flexes in the Euclidean plane. Conclude that every nonsingular, irreduc-
ible cubic in the real projective plane contains three collinear flexes.

(See Figures 8.3 and 8.4. Together with Exercise 11.14, this exercise
shows that every nonsingular irreducible cubic has exactly three flexes in the
real projective plane.)
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12.9.

12.10.

12.11.

12.12.

12.13.

(a) Prove that a cubic in the real projective plane is nonsingular and irre-
ducible if and only if it can be transformed into one of the equations

2+ +2° = —6ayz,
(x+y+2)°=wxyz,

for a real number w not equal to 0 or 27. Use Exercises 8.18(d),
8.20(a), 8.25, 8.31(c) and (d), 12.4, 12.5, and 12.8. (See Figures 8.13,
8.14, and 8.17.)

(b) Prove that no cubic in the real projective plane can be transformed
into more than one of the equations in part (a). Use Exercises 8.7,
8.20(b) and (c), 8.25, and 11.14.

Prove that a cubic in the real projective plane is nonsingular and irreduc-
ible if and only if it can be transformed into one of the equations

Yy — 320y +3"%) =1,
(+y—3"%-2)(y+3"x-2)=u,

for a real number u not equal to 0 or 4. Prove that no cubic can be trans-
formed into more than one of these equations. Use Exercises 8.19(b),
8.20(a), 8.25, and 12.9. (See Figures 8.10-8.12.)

Prove that a cubic in the real projective plane is nonsingular and irreduc-
ible if and only if it can be transformed into

P +y3 +2° = txyz

for a real number t # 3. Prove that no cubic can be transformed into more
than one of these equations. Use Exercises 8.24 and 12.9. (See Figures
8.15-8.17.)

(a) Prove that a cubic in the real projective plane is nonsingular and irre-
ducible if and only if it can be transformed into

Xy +xy? + 28 = mayz

for a real number m # 3. Use Exercises 8.26(a), 8.27, 8.31(e), 12.6,
12.8, and Theorem 3.4. (See Figures 8.18 and 8.19.)

(b) Prove that no cubic can be transformed into more than one of the
equations in part (a). Use Exercises 8.7, 8.26(a), 8.28, and 11.14.

In the notation of Exercise 12.7, set p(x) = g(x)}/2. The graph of y = p(x) is

the top half of the graph of y? = g(x), and y = —p(x) is the bottom half
(Figures 8.3-8.7).
(a) Deduce from Exercise 12.7(a) that the value of h at any point (x,y) on
the graph of f is —8p(x)*p"(x).
(b) Conclude that the flexes of f in the Euclidean plane are exactly the
points (a, +p(a)) such that p”(a) = 0.
(This shows that flexes generalize inflection points for cubics of the
form y? = q(x). Exercise 12.15 extends this result to all curves.)
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12.14.

12.15.

12.16.

12.17.

III. Cubics

Over the real numbers, let f(x,y) be a polynomial.
(a) Let r(x) be a differentiable function of x. Prove that

%f(x, (%) = filx, 7)) + fylx, 7(x))7" ()

by writing f(x,y) =Y e;¥'y’ for real numbers e; and using single-
variable calculus.

(b) If g(x) is a differentiable function such that the graph of y = g(x) lies
on the curve f(x,y) = 0, use part (a) to prove that

filx @)
fy(x,8(x))
for all values of x such that f,(x, g(x)) is nonzero.

(c) Do part (b) by using Theorem 12.1 and the discussion after (12) of Sec-
tion 4.

g'x) = (38)

Over the real numbers, let f(x,y) be a polynomial. Let y = g(x) be a differ-
entiable function whose graph lies on the curve f(x,y) = 0. Let a be a real
number. Use Exercise 12.14 and Theorem 12.2 to prove that f has a flex at
(a,g(a)) if and only if g”(a) =0 and f is nonsingular at (a,g(a)). (This
shows conclusively that flexes are generalizations of inflection points.
One possible approach is to use Exercise 12.14(a) to differentiate both
sides of (38) with respect to x. Use this result and Exercise 12.14(b) to
prove that the quantity in (2) equals —f;’g” (a) when all first and second
partial derivatives of f are evaluated at (a,g(a)). When f is nonsingular
at (a, g(a)), deduce from Exercise 12.14 and Theorem 12.1 that g”(a) exists
and f,(a,g(a)) is nonzero. Why does the exercise follow?)

Over the real numbers, let F = 0 and G = 0 be curves of degrees m and n,

and assume that F and G have no common factors of positive degree.

(a) Prove that the number of times, counting multiplicities, that F and G
intersect in the real projective plane is mn — 2k for an integer k with
0<k<mn/2.

(b) If F and G intersect at least mn — 1 times, counting multiplicities, in
the real projective plane, prove that they intersect exactly mn times,
counting multiplicities, in the real projective plane.

(c) If m and n are both odd, prove that F and G intersect at least once in
the real projective plane.

(Part (b) is used in Exercises 14.12 and 14.15. This exercise can be done
by adapting the proof of Theorem 12.7. Theorem 9.1 is a special case of

part (b).)

Prove that a cubic in the real projective plane is irreducible if and only if it
can be transformed into one of the equations

Yy =x>+x+h, y=x—x+h,
y2:X3+1, y2:X3_1) yZ:XBJ

as h varies over all real numbers. Prove that no cubic can be transformed
into more than one of these equations. (See Exercises 8.7 and 8.9 and
Theorems 8.1, 8.4, and 12.7.)
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12.18.

12.19.

12.20.

12.21.

12.22.

Prove that every singular, irreducible cubic in the real projective plane
has one or three flexes. Use Exercise 12.7(a) and Theorems 8.4, 8.1(i),
and 8.2. (See Figures 8.5-8.7.)

Over the real numbers, let
G = ax* + bxy + cy? + dxz + eyz + fz*

be a homogeneous polynomial of degree 2. Let M be the determinant

2a b d
b 2¢ e
a e 2f

(a) Use Theorems 12.4, 5.2, and 5.1 to prove that M # 0 if G is a conic and
that M = 0 if G consists of two lines, one line doubled, or a single
point.

(b) Deduce from part (a) and Theorem 5.1 that G is a conic if and only if
M # 0 and G contains at least one point.

(c) Prove that M # 0 if G is the empty set. (Hint: One possible approach is
to consider the graph of G in the complex projective plane.)

Does Theorem 12.4 remain true when F has degree 1? Justify your
answer.

Let C be a nonsingular, irreducible cubic in the real projective plane. De-
fine sextatic points as in Exercise 10.12. Prove that C has either three or
nine sextatic points. (See Theorems 8.1-8.3 and 12.7 and Exercises 8.7,
10.12, 11.14, and 12.8.)

Let the notation be as in Exercise 12.21. Add points of C with respect to a

flex O, as in Definition 9.3.

(a) Prove that C has a point of order 2 and a point of order 3 and that their
sum has order 6. (See Exercise 9.2 and Theorems 8.2, 8.3, and 12.7.)

(b) If C has three sextatic points, prove that they are P, 3P, 5P, where P is
a point of C of order 6. Prove that the third intersections of the tan-
gents at these points are the points 4P, O, 2P, respectively, and these
are the three flexes of C. Illustrate this result with a figure. (See (a)
and Exercises 9.2 and 10.13.)

(c) If C has nine sextatic points, prove that they are P, 3P, 5P, Q, and
kP+ Q for k=1,...,5 where P has order 6,Q has order 2, and
Q # 3P. (See (a), Exercises 10.13 and 11.14 and Theorems 8.2 and 8.3.)

Exercises 12.23-12.32 use the discussion before Exercise 11.11. The definitions of
first and second partial derivatives in (17)-(19) and the subsequent discussion,
the definition of Hessians in (25), and Theorems 12.1 and 12.4 all extend without
change to the complex numbers.

12.23.

Let C(x,y,z) = y?z — x> — fx?z — gxz> — hz® be the homogenization of (6)

of Section 8 for complex numbers f, g, h.

(a) Use (25) to find the Hessian H of C and prove that it is nonzero.

(b) Prove that C and H are nonsingular and tangent to different lines at
(0,1,0).
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12.24.

12.25.

12.26.

12.27.

12.28.

12.29.

III. Cubics

(c) Use Theorems 4.11 and 8.1(i) and Exercise 8.7 (which all extend
without change to the complex numbers) to prove that C and H inter-
sect exactly once at every flex of C.

Prove that every nonsingular complex cubic has exactly nine flexes in the
complex projective plane, which lie by threes on twelve lines. Prove that the
flexes can be transformed into the points in (17) of Section 11 for d = w,
where w is given by (62) of Section 10. Use Theorems 3.4, 8.1, 12.4, and
12.5 (which all extend without change to the complex numbers), Bezout’s
Theorem 11.5, and Exercises 11.11-11.13, 11.15, and 12.23.

Let w be given by (62) of Section 10. Prove that a complex cubic C con-
tains the nine points
(=1,1,0) (1,0,—1) (0,-1,1)
(w,1,0) (1,0, w) (0,,1) (39)
(—w?,1,0) (1,0, —w?) (0, —w?,1)
if and only if C is given by
ax® + ay® + az® + bxyz (40)

for complex numbers a and b not both zero. (See Exercise 10.3.)

(a) Prove that the cubic in (40) has Hessian
%3 41y 4+ 12° + swyz
for r = —6ab? and s = 216a°® + 2b°.
(b) Prove that every complex cubic that contains the nine points in (39)

has them as flexes. (See Theorems 12.1 and 12.4, part (a), and Exer-
cise 12.25.)

(a) For any complex number t, prove that the complex cubic
Xy 2% =tz (41)
is nonsingular if and only if t3 # 27.

(b) Conclude from part (a) and Exercises 12.24 and 12.26 that there is a
transformation that maps the points in (39) to the points in (17) of Sec-
tion 11 for d = w, where w is given by (62) of Section 10.

(c) Use parts (a) and (b) and Exercises 12.24 and 12.25 to prove that a
complex cubic is nonsingular if and only if it can be transformed into
(41) for a complex number ¢ such that t3 # 27.

Prove that the four complex cubics given by (41) with t*> = 27 and by the
equation xyz = 0 are the four triples of lines containing the nine points of
(39). (See Exercises 12.24-12.27.)

Prove that a complex cubic is nonsingular if and only if it can be trans-
formed into

yr=x(x—1)(x —w)
for a complex number w other than 0 and 1. (Note that Theorems 8.1 and

8.2 extend without change to the complex numbers. Exercise 11.18 de-
scribes the latitude in the choice of w.)
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12.30. (a) Let s, t, u, v be complex numbers such that 4s* 4+ 27t? and 4u® + 2712
are both nonzero. Prove that we can transform the complex cubic

yr=x3fsxtt (42)
into y% = x® + ux + v if and only if

48 4
483 4+ 27t2  4uB + 2702

(See Exercises 8.7 and 8.9 and Theorem 8.1(i), which all extend with-
out change to the complex numbers.)

(b) Let C be a nonsingular complex cubic. Prove that we can associate a
complex number j with C such that we can transform C into (42) for
complex numbers s and ¢t if and only if

4s*
4t 272
(See Exercises 9.17 and 8.9, which extend without change to the com-
plex numbers, Exercise 12.29, and part (a).)

12.31. Let C be a nonsingular complex cubic, and let j be the complex number
associated with C in Exercise 12.30(b). For any complex numbers a, b, c,
let

q(x) =% + ax®> + bx +c,

and define the discriminant A of C by (49) of Section 9. Why is A # 0?
Prove that C can be transformed into y? = g(x) if and only if

4(3b —a®)® .
w7

12.32. (a) For any integer n > 4, prove that there is a homogeneous polynomial
of degree n that is irreducible over both the real and the complex
numbers, that determines a nonsingular curve in the real projective
plane, and that determines a complex curve that has a singular point
in the complex projective plane.

(b) Can part (a) be done when n < 3? Justify your answer.

§13. Determining Cubics

Five points, no three of which are collinear, lie on a unique conic (by
Theorem 5.10). We derive an analogous result for cubics in this section:
We get nine points that lie on a unique cubic by starting with eight
points, no four of which are collinear and no seven of which lie on a
conic, and adding any other point except at most one.

We work over the real numbers except where we state otherwise.
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A homogeneous linear equation is an equation of the form
ar1xy + -+ apx, =0, (1)

where the coefficients a., ..., a, are real numbers and x4, ..., x,, are vari-
ables. The term “homogeneous” indicates that the right-hand side of the
equation is zero rather than a nonzero number. A system of homoge-
neous linear equations consists of a finite number of homogeneous lin-
ear equations to be satisfied simultaneously, such as

X1 —2x+ x3+4x,+ x5 =0,
2x] — 6xy + x3 —2x4 +3x5 =0, (2)

—X1 + 5%y + 4x3 + 3x4 + 2x5 = 0.

The general equation of a cubic is
ax® + bx’y + cxy® + dy® + ex” + fry + gy
+hx+iy+j=0 (3)
in rectangular coordinates and
ax® + bx*y + cxy® + dy® + ex*z + fxyz + gy’z

+hxz? +iyz* +jz° =0 (4)

in homogeneous coordinates. To specify that a cubic contains a certain
point, we substitute the coordinates of the point for the variables in (3)
or (4) and obtain a homogeneous linear equation in the ten coefficients
a-j. In the next example, requiring a cubic to contain the eight points in
Figure 13.1 gives eight homogeneous linear equations in the ten coeffi-
cients a-j. We use these equations to eliminate all but two of the coeffi-
cients.

ExampLE 13.1
Determine all cubics through the eight points (-1, 2), (—1,0), (-1, —-2),
(05 1)9 (03 _1)= (1; 2)5 (150)9 (13 _2> <Flgure 131)

Solution
Because the points are given in rectangular, instead of homogeneous,
coordinates, we use (3) instead of (4). Substituting the coordinates of
the points for x and y in (3) gives a system of eight homogeneous linear
equations in the ten coefficients a—j. We use each equation to eliminate
one of the coefficients.

Substituting (1, 0) and (—1,0) in (3) gives

at+e+h+j=0 and —a+e—h+j=0.
Adding and subtracting these equations and dividing the results by 2
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Figure 13.1

gives the equivalent equations
e+j=0 and a+h=0.
By rewriting these equations as
j=—e and h=—a,
we can eliminate h and j from (3) and get
ax® + bx’y + cxy* + dy® + ex” + fry + gy
—ax+iy—e=0. (5)
Similarly, substituting (0,1) and (0, —1) in (5) gives
d+g+i—e=0 and —d+g—i—e=0.

Adding and subtracting these equations and dividing the results by 2
gives the equivalent equations

g—e=0 and d+1i=0.

By rewriting these equations as
g=c¢ and i=—d,
we can eliminate g and i from (5) and get
ax® + bx*y 4 cxy? + dy® + ex* + fxy + ey®
—ax—dy—e=0. (6)
Substituting (1,2) and (—1, 2) in (6) and collecting terms gives
2b+4c+6d+4e+2f =0 and 2b —4c+ 6d + 4e — 2f = 0.

Adding and subtracting these equations and dividing the results by 4
gives the equivalent equations

b+3d+2¢=0 and 2c+ f=0.
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By rewriting these equations as
b= —3d— 2e and f=—2c,
we can eliminate b and f from (6) and get
ax® + (=3d — 2e)x*y + cxy® + dy® + ex* — 2cxy + ey*
—ax—dy—e=0. (7)

Finally, substituting (1, —2) and (—1,—2) in (7) and collecting terms
gives
8 +8=0 and —8¢c+8¢=0.

Adding and subtracting these equations and dividing by 16 gives the
equivalent equations ¢ = 0 and e = 0. Thus, (7) becomes

ax® — 3dx*y + dy® — ax — dy = 0. (8)

We have used the eight given points to eliminate the eight coefficients b,
¢, e—j from (3), leaving the two coefficients a and d. The only restriction
on a and d is that they are not both zero (so that (8) is a cubic).

If we collect multiples of a and d, (8) becomes

aC+dD =0, (9)

where Cis ¥® — x and D is y® — 3x*y — y. As a and d vary over all pairs of
numbers that are not both zero, (9) gives all cubics through the eight
specified points. Factoring

X —x=x(x+1)(x—1)

shows that the cubic C =0 consists of the three vertical lines x = 0,
x=—1, and x = 1. (See Figure 13.2, which shows the eight points in
Figure 13.1). Factoring

v -3 y—y=yly’-3x*-1)

shows that the cubic D = 0 consists of the x-axis y = 0 and the hyperbola
y? — 3x%? =1 (Figure 13.3).

Figure 13.2 Figure 13.3
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If d # 0, dividing (9) by d gives
rTC+D=0 (10)

forr =a/d. If d = 0, we have a # 0 (since a and d are not both zero), and
dividing (9) by a gives
C=0. (11)

Conversely, for any real number 7, (10) has the form of (9), and so does
(11). In short, the cubics through the eight given points are given by (10)
for all real numbers r and (11). O

Figures 13.4-13.12 show (10) for various values of r. Each figure is
based on a computer plot of (8) where a is the chosen value of v and d
is 1. Since D corresponds to » = 0, we can picture Figure 13.3 between
Figures 13.8 and 13.9. By thinking of C as vC + D for r = oo (where o
stands for both 4o and —o0), we can picture Figure 13.2 as the transi-
tion from Figure 13.12 back to Figure 13.4.

The general cubic in (3) and (4) has ten coefficients a-j. When we
specified eight points on the cubic in Example 13.1, we obtained a sys-
tem of eight homogeneous linear equations in the coefficients. We solved
the system by expressing eight of the coefficients in terms of the other
two. This gave the family of cubics in (9) with two parameters a and d.
Dividing by a or d gave the family of cubics in (10) and (11) with one
parameter v (where (11) corresponds to v = o0).

To generalize this example, we consider general systems of linear
equations. Suppose that a system of homogeneous linear equations has
m equations and n variables for n > m, which means that there are
more variables than equations. The next theorem shows that we can
use the m equations to express m of the variables in terms of the other
n — m when the given equations are not redundant.

For example, consider the system of linear equations (2), where there
are m = 3 equations in n = 5 variables. We can express the m = 3 vari-
ables x1, Xz, x3 in terms of the remaining n — m = 5 — 3 = 2 variables x4
and xs.

We can eliminate x; from the last two equations in (2) by subtracting
twice the first equation from the second and by adding the first equation
to the third. This gives

—ZXZ — X3 — 10X4 + X5 = 0,
(12)
3xy + 5x3 + 7x4 +3x5 = 0.
Any solution of the system in (2) gives a solution of the system in (12).
Conversely, any values of x,-xs that satisfy the system in (12) corre-
spond to a solution of the system in (2) when the first equation in (2) is
used to determine the value of x;. We have reduced (2) to the system
(12) by eliminating one equation and one variable.
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r=3
r=10
Figure 13.4 Figure 13.5
r=2.5 r=2
Figure 13.6 Figure 13.7
r=1

Figure 13.8 Figure 13.9

Similarly, we can eliminate x, from the second equation in (12) by
adding % times the first equation to the second. This gives

Zx3 —8x4+3x5 = 0. (13)

The systems of equations in (12) and (13) have corresponding solutions

when the value of x; is determined by the first equation in (12).
For any values of x4 and xs, (13) determines the value of x3, and the
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r=-2 r=-3
% % |
Figure 13.10 Figure 13.11 Figure 13.12

first equations in (12) and (2) determine the values of x, and x;. Specifi-
cally, solving (13) for x3 gives
16 9

X3 = —X4 ——Xs5. 14
3= X T (14)

Substituting this expression for x; in the first equation in (12) gives
2x 16 X g X 10x4 +x5 =0
2 oM T o 4+ x5 =0,

which simplifies to

43 + 8 (15)
Xy = ——2X4 +—Xs.
2 7 4 7 5
Using (14) and (15) to eliminate x, and x3 from the first equation in (2)

giVGS
X 2 —X4 +F=X + | —=x —-X +4x, + x5 =0
1 7 4 7 5 7 4 7 5 4 5 5

which simplifies to

—130, +18x (16)
7 4 7 5.

X1 =

Equations (14)-(16) express x;, Xz, x3 as sums of multiples of x4 and xs.
Any choice of values for x, and x5 gives a unique solution of system (2).
For example, setting x, =1 and x5 =2 in (14)-(16) gives x3 = —2/7,
Xy = —27/7, and X1 = —94/7

In general, we have the following result:

Theorem 13.2
Consider a system of m homogeneous linear equations in n variables for
m < n. Assume that none of the equations is a sum of multiples of the others.
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Then the system can be solved by expressing m of the variables as sums of
multiples of the other n — m variables.

The second sentence of the theorem formalizes the idea that the equa-
tions are not redundant. When m = 1 this sentence means that the one
equation in the system is nonzero. When m > 1, each equation is non-
zero because it is not the sum of zero times the other equations. Thus,
in either case, every equation in the system is nonzero.

Proof

Because the first equation in the system is nonzero, it contains a variable
x; with nonzero coefficient. We eliminate x; from the other equations by
adding multiples of the first. This reduces the system to m — 1 equations
in n — 1 unknowns when we set aside the first equation. The solutions of
the reduced system correspond to the solutions of the original system by
using the first equation of the original system to determine the value of
X;.

Let the equations of the original system be E; =0,...,E, =0,
which each have the form (1). The equations of the reduced system are
Ey —1Ey =0,...,Ey — 1y E; = 0 for real numbers 1y, .. ., ry,. If one equa-
tion of the reduced system, say E, — r,E;, were a sum of multiples of the
others, we would have

Ey — 1By = b3(Ez — 13E1) + -+ - + by(Epy — 1 En)
for real numbers bs, ..., by,,. We could rewrite this equation as
Ey = (r2 —b3r3 — -+ — byty)E1 + b3E3 + - - + by Epy,

which would contradict the assumption that no equation of the original
system is a sum of multiples of the others. Thus, the reduced system also
has the property that no equation is a sum of multiples of the others.
We have reduced the system by one equation and one variable. We
continue in this way until we have eliminated all m equations. We have
also eliminated m variables, one for each equation. As in the discussion
accompanying (14)-(16), we can express each of the eliminated vari-
ables as a sum of multiples of the remaining n — m variables. O

As in Example 13.1, requiring a cubic to contain a particular point
gives a homogeneous linear equation in the coefficients of the cubic.
The next result implies that there are no redundancies in the equations
determined by eight points when no four of the points are collinear and
no seven lie on a conic. We call two sets of points disjoint when they have
no points in common.

Theorem 13.3

Let P1-Pg be eight points in the projective plane such that no four are col-
linear and no seven lie on a conic. Then there is a cubic that contains P;-P;
but not Pg.
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Figure 13.13

Proof
We divide the proof into three cases, based on the arrangement of the
points P;-P;.

Case 1

No three of the points P;-P; are collinear (Figure 13.13). Then PP,
PsP;, PgP; are three different lines, and so P; is the unique point where
any two of these lines intersect. Thus, at most one of the three lines con-
tains Pg. By renumbering P,—Ps, we can assume that neither PsP; nor
PsP; contains Pg. The five points P;-Ps determine a conic K = 0, and
the five points P;-Py, Pg determine a conic K’ = 0 (by Theorem 5.10).

We claim that at least one of the two conics K and K’ does not contain
Pg. Otherwise, if K and K’ both contained Pg, their intersection would
include the five points P, -P,, Pg, and K and K’ would be the same conic
(by Theorem 5.10). This conic would contain the seven points P;-Pg, Pg,
which would contradict the hypothesis that no seven of the points P;-Pg
lie on a conic. This contradiction shows that K and K’ cannot both con-
tain Pg.

Let L = 0 be the line PgP;, and let L' = 0 be the line PsP;. The cubic
KL = 0 consists of the conic K and the line L, and the cubic K'L' =0
consists of the conic K’ and the line L'. Both of the cubics KL and K'L’
contain the seven points P;-P;. At least one of these two cubics does
not contain Pg, since neither L nor L' contains Pg, and either K or K’
does not contain Pg.

Case 2

Three of the points P;-P; are collinear, and we cannot choose a second
set of three collinear points from P; -P; disjoint from the first. By relabel-
ing P;-P;, we can assume that P;-P; lie on a line L = 0 and that no three
of the points P,—P; are collinear (Figure 13.14). Let M =0, N =0, R =0,
and S = 0 be the lines P,Ps, PsP;, PP, PsP;, respectively. No two of these
lines are equal, because no three of the points P,—P; are collinear. Thus,
the two pairs of lines MN = 0 and RS = 0 do not both contain Pg, since
their intersection consists of the four points P,~P;. The line L through
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Figure 13.14

P -P; does not contain Pg, since no four of the points P;-Pg are collinear.
Thus, the two cubics LMN = 0 and LRS = 0—which consist of the two
triples of lines L, M, N and L, R, S—both contain the seven points
P;-P;, and at least one of them does not contain Pg.

Case 3
Two disjoint sets of three collinear points can be chosen from P,-P;. By
renaming P;-P;, we can assume that Py, P,, P; lie on a line L = 0 and
that P4, Ps, Pg lie on a line M = 0 (Figure 13.15). Neither L nor M con-
tains Pg, since no four of the points P;-Pg are collinear. Let N = 0 be a
line through P; that does not contain Ps. The cubic LMN = 0 consists of
the three lines L, M, N, contains the seven points P;-P;, and does not
contain Pg.

Because Cases 1-3 cover all possibilities, the proof is complete. O

We can now generalize Example 13.1 and determine all cubics
through eight points, no four of which are collinear and no seven of
which lie on a conic. As stated before Theorem 6.1, we call curves dis-
tinct exactly when they are not scalar multiples of each other.

Theorem 13.4

Let P1-Pg be eight points in the projective plane such that no four are
collinear and no seven lie on a conic. Then the cubics containing P;-Pg
are C=0 and rC+ D = 0 for all numbers v, where C and D are distinct
cubics.

Figure 13.15
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Proof

The eight points P;-Pg give a system of eight homogeneous linear equa-
tions in the ten coefficients of the general cubic in (4). None of the equa-
tions is a sum of multiples of the others because any seven of the points
P;-Pg lie on a cubic that does not contain the eighth (by Theorem 13.3).
Taking m = 8 and n = 10 in Theorem 13.2 shows that eight of the ten co-
efficients of the general cubic can be expressed as a sum of multiples of
the other two. If we call the latter two coefficients s and ¢, we can express
all the coefficients of the cubic as sums of multiples of s and t. Collecting
the terms with s and those with t shows that the cubics containing P; -Pg
are sC + tD = 0 for real numbers s and ¢ not both zero, where C and D
are distinct cubics: The fact that s and t are coefficients of different terms
of the general cubic implies that C and D are both nonzero and are not
scalar multiples of each other. Dividing sC +tD by t when t # 0 and
dividing by s when t = 0 (and so s # 0) shows that the cubics containing
P;-Pg are C = 0 and vC + D = 0 for all real numbers 7. O

We want an analogue for cubics of Theorem 5.10, which states that
five points, no three of which are collinear, lie on a unique conic. We
start by extending Theorem 5.10 to include the case where three but
not four of the five given points are collinear and the conic is replaced
by two lines.

Theorem 13.5
Five points, no four of which are collinear, lie on a unique curve of degree 2.

Proof

Assume first that no three of the five given points are collinear. Then
any two lines contain at most four of the points, and so the only curves
of degree 2 that contain all five points are conics (by Theorem 5.1). The
five points lie on a unique conic (by Theorem 5.10).

On the other hand, assume that three of the given points—say, A, B,
C—lie on a line L = 0. The two remaining points—say, D and E—lie on a
line M = 0 (by Theorem 2.2). Then LM = 0 is a curve of degree 2 that
contains the five points A-E. Conversely, let Q = 0 be any curve of de-
gree 2 that contains the five points A-E. The intersection of the line
L =0 and the curve Q = 0 contains the three points A, B, C. Since Q
has degree 2, L is a factor of Q (by Theorem 4.5), and we can write
Q = LN for a homogeneous polynomial N of degree 1. Because the line
L = 0 contains the three points A, B, C, it does not contain D or E (since
no four of the points A-E are collinear, by assumption). Since D and E
lie on the curve Q = LN, they lie on the line N = 0. Because D and E
determine a unique line (by Theorem 2.2), the lines N =0 and M =0
are the same. Then N and M are scalar multiples of each other, and so
are Q = LN and LM. O
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The origin (0, 0) satisfies (8) for all real numbers a and d. Thus, Ex-
ample 13.1 shows that all cubics through the eight points in Figure 13.1
also contain the origin, as Figures 13.2-13.12 suggest. In fact, the next
result implies that any two of these cubics intersect exactly nine times,
at the eight points in Figure 13.1 and the origin.

Theorem 13.6

Let P1-Pg be eight points, no four of which are collinear, and no seven of
which lie on a conic. Then all pairs of cubics containing P;-Ps intersect in
the same nine points, listed by multiplicity. That is, there is a point Py such
that any two cubics containing P;-Pg intersect in exactly the nine points
Py -Py, listed by multiplicity.

Proof
By Theorem 13.4, the cubics containing P;-Pg have the form C =0
and rC + D = 0 for all numbers », where C and D are two cubics that
are not scalar multiples of each other. We divide the proof into three
claims.

Claim 1
C and D have no common factors other than constants.

Any such factor would have degree 1 or 2, since C and D are not scalar
multiples of each other. We consider these two possibilities separately.

Suppose first that C and D have a common factor L of degree 1. We
have C=LQ and D = LR for homogeneous polynomials Q and R of
degree 2. Since no four of the points P;-Pg are collinear, at most three
of them lie on L, and at least five of them do not. These points lie on
both Q and R, since they lie on C and D. Tt follows that Q and R are
scalar multiples of each other (by Theorem 13.5). This contradicts the
assumption that C = LQ and D = LR are not scalar multiples of each
other. Thus, C and D have no common factors of degree 1.

Suppose next that C and D have a common factor Q of degree 2. We
have C =LQ and D = MQ for homogeneous polynomials L and M of
degree 1. Q is not a product of two lines or of one line doubled, by the
previous paragraph. If Q is a conic it contains at most six of the points
P;-Pg, by the assumption that no seven lie on a conic. By Theorem 5.1,
the only other possibilities are that Q is a single point or the empty set.
In any case, at most six of the points P;-Pg lie on Q, and so at least two
do not. Since the latter points lie on both C and D, they lie on both L and
M. Then L = 0 and M = 0 are the same line (by Theorem 2.2), and so L
and M are scalar multiples of each other. This contradicts the assump-
tion that C = LQ and D = MQ are not scalar multiples of each other.
Thus, C and D have no common factors of degree 2.
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Claim 2
C and D intersect exactly nine times, counting multiplicities, in the real pro-
jective plane.

Since C and D have no common factors of positive degree over the
real numbers (by Claim 1), the same holds over the complex numbers
(by Theorem 11.9). Thus, C and D intersect at exactly nine points, listed
by multiplicity, in the complex projective plane (by Bezout’s Theorem
11.5). Let Py be the ninth point of intersection, in addition to P;-Pg; Pg
may or may not equal one of the points Py -Ps.

Consider the map P — P of points in the complex projective plane,
which was introduced before Property 12.6. Because C and D have real
coefficients, this map interchanges among themselves the points of inter-
section of C and D in the complex projective plane, listed by multiplicity
(by Property 12.6). Because P;-Ps have real coefficients, they are all
fixed by this map. Thus, the map P — P also fixes Py. It follows, as in
the last paragraph of the proof of Theorem 12.7, that Py lies in the real
projective plane. Thus, C and D intersect in the nine points P; - Py, listed
by multiplicity, in the real projective plane, as discussed before Theorem
11.1.

Claim 3
Any two cubics containing P,-Pg intersect at the same points, listed by
multiplicity, as do C and D.

By Theorem 13.4, any cubic containing P;-Ps has the form C or
rC + D for a real number r. Let Q be any point. We have
IQ(C, rC + D) = IQ(C, D>

(by Property 3.6(iv)), and so C and rC + D intersect the same number of
times at every point as do C and D. If r and s are unequal real numbers,
we have

In(rC+ D,sC+ D) = Iq((r —8)C,sC+ D)
(subtracting sC + D from rC + D, by Property 3.6(iv))
= I(C,sC+ D)
(by the remark after the proof of Theorem 3.6, since r — s # 0)
=Iq(C, D)

(by Property 3.6(iv)). This shows that *C + D and sC + D intersect the
same number of times at every point as do C and D.
Claims 2 and 3 establish the theorem. O

In Theorem 13.6, the given points P;-Pg are distinct, but P may or
may not equal one of them. If Py is one of the points P, -Pg, then any two
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cubics containing P; -Pg intersect twice at this point. If Py does not equal
any of the points P;-Pg, then it is a ninth point that lies on all cubics
through the eight points P;-Pg. In either case, the next result shows
that every point other than P;-Pg lies on a unique cubic through P; -Ps.

Theorem 13.7

Let P1-Pg be eight points, no four of which are collinear and no seven of
which lie on a conic. By Theorem 13.6, there is a point Py such that the inter-
section of any two cubics containing Py —Pg consists of the points P -Py, listed
by multiplicity. If Q is any point other than P, -Py, the nine points P, -Pg and
Q lie on a unique cubic.

Proof

By Theorem 13.4, the cubics containing P;-Ps are C and rC + D for all
numbers 7. At least one of these cubics contains Q: if C does not, then
rC + D does for

r = —D(S: t: u)/C<S’ t’ M),

where (s, t,u) are homogeneous coordinates for Q. The cubic containing
P;-Pg and Q is unique because Q does not equal any of the points P;-Pq
where any two cubics containing P; -Pg intersect (by Theorem 13.6). []

If we take the points P;-Pg in Theorem 13.6 to be the eight points
in Figure 13.1, the discussion before Theorem 13.6 shows that Py is the
origin. If Q is any point other than P, -Pg and the origin, the nine points
P;-Pg and Q lie on a unique cubic (by Theorem 13.7). We can think of
Figures 13.2-13.12 as illustrations of this fact.

The general polynomial of degree 2 in (1) of Section 5 has six coeffi-
cients. Specifying five points on the curve gives a system of five homo-
geneous linear equations in the coefficients. If the equations are not re-
dundant, we can use them to express five of the coefficients as multiples
of the sixth. Dividing all the coefficients by the sixth shows that the five
points lie on a unique curve of degree 2. Theorem 13.5 shows that five
points, no four of which are collinear, lie on a unique curve of degree 2,
which means that the conditions they impose on curves of degree 2 are
not redundant.

Likewise, the general cubic in (4) of this section has ten coefficients.
Specifying nine points on the cubic gives a system of nine homogeneous
linear equations in the coefficients. If the equations are not redundant,
we can use them to express nine of the coefficients as multiples of the
tenth. Dividing all the coefficients by the tenth shows that the nine given
points lie on a unique cubic.

Theorem 13.7 gives conditions under which nine points P;-Pg and Q
lie on a unique cubic, which means that the conditions they impose on
cubics are not redundant. P,-Pg are eight points such that no four are
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collinear and no seven lie on a conic. The ninth point Q is any point
except P;-Pg and at most one other: Q cannot be the point Py in Theo-
rem 13.6 determined by P;-Pg, where Py may or may not be one of the
points P;-Ps.

Exercises

13.1.

13.2.

13.3.

13.4.

13.5.

13.6.

13.7.

Three of the points P;-Pg in Example 13.1 lie on the line x = —1, two lie
on x = 0, and three lie on x = 1 (Figure 13.2). Why does it follow that no
four of these points are collinear and no seven lie on a conic? (This con-
firms that Theorems 13.6 and 13.7 apply to the given points P, -Pg.)

Let P;-Pg be eight points. Prove that every cubic containing P, -Ps is irre-
ducible if and only if no three of the points are collinear and no six lie on a
conic.

Let P;-Pg be eight points such that four are collinear or seven lie on a
conic. Prove that all cubics through P;-Pg contain the same line or conic
and that there are infinitely many such cubics. Deduce that there are infi-
nitely many points Q such that P;-Pg and Q lie on infinitely many cubics.

Let C and D be two cubics that intersect in exactly nine points P;-P,
listed by multiplicity, where the points P; -Pg are distinct. Prove that any
two cubics through P;-Pg intersect at exactly the nine points P;-Pq, listed
by multiplicity. (See Exercise 13.3.)

Let P;-Pg be eight points such that no five are collinear and no curve of
degree 2 contains all eight of the points. Prove that there are distinct
cubics C and D such that the cubics containing P;-Ps are exactly C =0
and rC 4+ D = 0 for all real numbers r. (Thus, Theorem 13.4 extends to
cases where four of the points P;-Pg are collinear or seven lie on a conic.
Exercise 13.3 shows that Theorems 13.6 and 13.7 do not extend to these
cases.)

Let P;-Ps be eight points. Assume that either five of these points are col-

linear or all eight lie on a curve of degree 2.

(a) Prove that P;-Pg lie on four cubics F;-F, such that F} # F,, F3 # F,,
and the points of intersection of F; and F, are not the same as those
of F3 and F;.

(b) Deduce that there do not exist cubics C and D such that the cubics
containing P;-P3 are C=0 and rC+ D =0 for all real numbers r.
(This shows that the conditions on the eight points P, -Pg in Exercise
13.5 cannot be weakened.)

Let P;-Pg be the eight points (1,1), (1,0), (1,—1), (0,1), (0,0), (0,—1),

(—=1,1), (—1,0).

(a) Asin Example 13.1, find the equations of all cubics through P, -Pg and
obtain an analogue of (8).
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13.8.

13.9.

13.10.

13.11.

13.12.

13.13.

13.14.

III. Cubics

(b) Use part (a) to find polynomials C and D such that the cubics through
Py-Pg are C=0 and rC+ D =0 for all numbers r. Draw graphs of
C = 0 and D = 0 that show P; -Ps.

(c) Find the coordinates of the point Py such that any two cubics through
Py -Ps intersect at the points P; Py, listed by multiplicity.

(d) As in Figures 13.4-13.12, use appropriate technology to graph the
cubics ¥*C+ D = 0 for a wide range of values of r. Show the points
P;-Py on each graph.

Do Exercise 13.7 for the eight points (0, 3), (0,—-3), (2,0), (—2,0), (2,1),
(23 _1)3 <_27 1)7 (_27 _1)

Do Exercise 13.7 for the eight points (1, 1), (1,0), (1,-1), (=1,1), (=1,0),
(—1,-1), A, B, where A and B are the points at infinity on lines of slope
1 and —1.

Do Exercise 13.7 for the eight points (1, 1), (1,0), (1,-1), (=1,1), (=1,0),
(—1,-1), S, T, where S and T are the points at infinity on lines of slope 2
and —2.

Do Exercise 13.7 for the eight points (1,0), (—1,0), (0,1), (0,—1), (1,1),
(—1,-1), U, V, where U and V are the points at infinity on horizontal
and vertical lines.

Do Exercise 13.7 for the eight points (1, 1), (1,—1), (—1,1), (-1,-1), (2,1),
(—2,-1), M, N, where M and M are the points at infinity on vertical lines
and on lines of slope 1.

Do Exercise 13.7 for the eight points (0, 0), (1,1), (1, —1), (—1,1), (-1, —1),
(23 1)7 (23 0)7 (23 _1)

Let K; = 0, K; = 0, K3 = 0 be three conics through the same four points A,
B, C, D. Let P be a fifth point. Let L; =0, L, = 0, L3y = 0 be three lines
through P. Assume that the line L; = 0 intersects the conic K; = 0 at two
points Q; and R; for i = 1, 2,3, and assume that the eleven points

A,B,C,D,P,Q1,Ry,Q3,R2,Q3,R3

are distinct. Prove that these eleven points lie on a cubic.

(Hint: One posible approach is to note that K;L; and K;L; are cubics
that intersect at nine of the eleven points. Deduce that no four of the
nine points are collinear and no seven lie on a conic. Note that eight of
the nine points lie on the cubic K;L3; + rK3L; for some real number 7.
Then apply Theorem 13.6.)



Parametrizing
Curves

CHAUPTER

Introduction and History
Introduction

We proved many of the theorems in previous chapters by computing
intersection multiplicities in two different ways and setting the results
equal. Among the theorems we proved in this way are Pascal’s Theorem
6.2 and its variant Theorem 6.3, Pappus’ Theorem 6.5, and Theorem 9.7
on the associativity of addition on a cubic. The intersection properties
guarantee that different ways of computing an intersection multiplicity
give the same result. In Sections 14 and 15, we determine intersection
multiplicities and derive the intersection properties. This completes the
proofs of the theorems in previous chapters.

We specify the number of times that two curves intersect at a point P
by using power series to parametrize one of the curves near P. It is re-
markable that straightforward computations with power series suffice to
reveal the behavior of a curve near any point, even if the curve is singu-
lar there.

In Section 14, we focus on intersections at the origin and parametriza-
tions of the form

x=t4 y=plt) (1)
for a positive integer d and a power series
plt) = art + axt® + ast® + - (2)

with complex coefficients a; and no constant term. To find the a; recur-
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sively, we iterate the step of substituting
x =t y=ta+z) (3)

in a curve f(x, y) and discarding factors of t to get a new curve g(t, z),
where [ and k are positive integers and a is a complex number. We vary
the usual presentation of this algorithm by letting a take the value 0.
This generates parametrizations successively instead of independently,
which simplifies both the general analysis of the algorithm and its appli-
cation to specific curves.

We use parametrizations by power series of general form in Section
15 to determine intersection multiplicities at any point. Letting the para-
metrizations have general form makes it easy to see that intersection
multiplicities are preserved by transformations and complex conjugation
of coordinates. The challenge lies in proving that we get the same values
for intersection multiplicities at the origin as in Section 14, where we
limited ourselves to parametrizations given by (1) and (2).

In Section 16, we take the duality of conics and their envelopes and
extend it to curves of higher degree. Let F(x, y, z) be an irreducible curve
of degree more than one that has infinitely many points. Then there is
a unique curve G(x, y,z) that meets the same conditions and contains
every point (h, 1,1) such that hx + y + Iz = 0 is the tangent line of F at a
point (a, b, 1). Parametrizations are the key to proving that the tangent
line of G at (h,1,1), if it exists, is ax + by + z = 0. This implies that F
and G play symmetric roles. They are called dual curves, and each one
is the equation of the envelope of the other. The map

(a,b,1) — (h,1,1) (4)
is given by

_FX(a7b91> and Z:_aFX<a9b7 1)

= F(ab1) R (5)

and it matches up the points of F and G with finitely many exceptions
on each curve. We find the degree of G, which does not generally equal
the degree of F, by counting the points in the complex projective plane
where F is nonsingular and intersects an associated curve called a polar.

History

Analytic geometers worked with multiple intersections informally
until the late 1800s. Formal treatments of intersection multiplicities
arose through work on Bezout's Theorem, singular points, and higher-
dimensional algebraic geometry.

The most natural way to analyze the intersections of two curves
f(x,y) =0 and g(x,y) = 0 is the following technique called elimination.
As in Example 1.13 and the proof of Bezout's Theorem 11.5, we elimi-
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nate the largest power of y in one of the polynomials f and g by adding
suitable multiples of f and g together. We continue in this way until we
eliminate all powers of y. This gives a nonzero polynomial r(x) in x alone
such that

r(x) = fx, yulx,y) + g(x, y)v(x,y)

for polynomials u and v. If r(x) has minimal degree, it is called the re-
sultant of f and g. If f and g do not intersect at infinity or at two points
in the complex affine plane with the same x-coordinate, the roots of r(x)
are the x-coordinates of the intersections of f and g, and the multiplicity
of each root is the multiplicity of the corresponding intersection. In this
case, Bezout's Theorem follows from the fact that the degree of r(x) is the
product of the degrees of f and g.

Elimination was discovered by Chinese mathematicians in the twelfth
century. Newton claimed in 1665 that curves of degree m and n intersect
in mn points when imaginary intersections are included. Colin Maclaurin
explored this assertion and deduced in 1720 that an irreducible curve of
degree n has at most (n — 1)(n — 2)/2 singular points. In 1764, Etienne
Bezout and Leonhard Euler independently developed explicit elimina-
tion algorithms and deduced that the product of the degrees of two poly-
nomials of appropriate form is the degree of their resultant. In 1840,
James Sylvester developed the modern expression for the resultant as a
determinant. Complete proofs of Bezout’s Theorem appeared in the late
1800s, when resultants were combined with homogeneous coordinates.

Parametrizations, which we introduce in this chapter, give a second
way to determine intersection multiplicities. The first equation in (1)
yields t = x'/4 where x'/? is a complex number whose dth power is x.
Substituting in (2) and the second equation in (1) gives the “fractional
power series”

1/d

y=p") = ax? + ax*? + azd - (6)

A curve f(x, y) = 0 has parametrization (1) exactly when f(x, y) has

y— px"4) (7)

as a factor. For the Riemann surface of f whose sheets lie over the com-
plex x-plane, the expressions (7) combine to give the sheets that repre-
sent points of f near the origin.

Newton introduced fractional power series to analyze the behavior of
a curve near a singular point. Writing the first equation in (3) as t = x!/!
and substituting in the second equation gives

y=x"a+z). (8)

Newton’s algorithm for finding factors (7) of a curve uses substitutions of
the form (8) to give the coefficients in (6) recursively. His diagram for
finding the integers k and [ in (8) is called “Newton’s polygon.”
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In 1850, Victor Puiseux used complex analysis to prove that a finite
number of expressions of the form (6) give the points of a curve f(x, y)
near a singular point translated to the origin. Georges Halphen showed
in the 1870s how to use fractional power series to determine intersection
multiplicities.

In addition to resultants and fractional power series, abstract alge-
bra provides an approach to intersection multiplicities. One way that
abstract algebra entered into algebraic geometry was through the wide-
spread work on invariant theory in the late 1800s, which we mentioned
at the end of the historical comments for Chapter I.

Abstract algebra also developed a role in algebraic geometry through
the work of Richard Dedekind and Heinrich Weber in 18382. They sought
to derive many of Riemann's results algebraically instead of analytically.
Riemann had studied algebraic functions—the functions on a Riemann
surface f(x,y) =0 that are induced by rational functions of the coor-
dinates x and y. Dedekind and Weber developed analogies between
algebraic functions and algebraic numbers—roots of polynomials with
rational coefficients. They took the ideas and structures of algebraic
number theory and extended them to fields of algebraic functions.

Abstract algebra became linked to algebraic geometry in another way
through Riemann’s introduction of “birational transformations.” These
are coordinate changes such that each new coordinate is a rational func-
tion of the old coordinates, and vice versa. For example, the map in (4)
and (5) between dual curves F and G is a birational transformation; inter-
changing F' and G reverses the map. For [ = 1, (3) is a birational transfor-
mation. Exercise 15.23 presents examples of birational transformations
of lines.

Birational geometry was developed about 1870 by a school of geom-
eters who sought to take Riemann’s work, which was based on complex
analysis, and reinterpret it in terms of the traditional study of algebraic
curves via projective geometry. Among the most notable of these geom-
eters were Alfred Clebsch, Max Noether (the father of Emmy Noether),
and Luigi Cremona. Subsequent geometers have emphasized birational
transformations instead of the (linear) transformations we introduced
in Section 3 because birational transformations provide far more free-
dom. Since they alter curves substantially, birational transformations
can be used to simplify, and thereby analyze, singular points. This
makes it vital to find properties of curves that are preserved by birational
transformations. One such property is the “genus” of an irreducible com-
plex curve C: the genus is the nonnegative integer g such that C arises
topologically from a sphere with g handles by identifying finitely many
points together. C is a birational transform of the complex numbers if
and only if g = 0. C is a birational transform of a nonsingular complex
cubic if and only if g = 1; we saw in the History for Chapter III that a
nonsingular complex cubic is topologically a torus.
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Max Noether proved a far-reaching generalization of Theorems 6.1
and 6.4 on “peeling off” conics and lines. Noether’s “Fundamental Theo-
rem” gives necessary and sufficient conditions in terms of the inter-
sections of complex curves F, G, and H for there to exist homogeneous
polynomials W and V such that

H=FW+GV.
By the intersection properties, this equation implies that
IP<G7 H) = IP<G> F) + IP(G> W)

for every point P in the complex projective plane, which means that
we can ‘“‘peel oft” the intersections of G and F from the intersections of
G and H. Exercise 14.9 shows that, if two curves G and H of degree n
intersect a nonsingular, irreducible curve F of degree m in the same mn
points, listed by multiplicity, then we can “peel off” these points from
the intersections of G and H. This is essentially an early forerunner
of Noether's Theorem due to Joseph-Diez Gergonne. Gergonne cham-
pioned analytic over synthetic geometry in the 1820s, building upon the
abridged notation introduced by Lamé and Bobillier.

In the 1830s, Pliicker used analytic methods to apply duality not just
to lines and conics but to curves of higher degree. His results on dual
curves include and go far beyond those in the paragraph of (4). Let F
and G be dual complex curves whose only singularities are of the two
most basic types, nodes and cusps. Pliicker derived four equations that
relate six quantities: the degrees of F and G and the numbers of nodes
and cusps on each curve. These equations are (92), (94), (107), and
(108) in Section 16, and their proofs are outlined in Exercises 15.12-
15.16 and 16.24-16.39. In the latter half of the 1800s, Clebsch, Halphen,
Leopold Kronecker, and Max Noether proved that the singularities of
any curve can be reduced to nodes by birational transformations.

Algebraic geometry became profoundly linked to both abstract alge-
bra and algebraic topology in the late 1800s and early 1900s when ana-
lytic geometers sought to extend their studies to surfaces and spaces of
all dimensions. They used tools from abstract algebra and algebraic
topology to handle the increasingly general subject matter. Algebraic
geometers strove to unify their work in the middle of the twentieth cen-
tury by introducing new structures such as abstract varieties, sheaves,
and schemes.

§14. Parametrizations at the Origin

We must still derive the Intersection Properties 1.1-1.6, 3.1, 3.5, and
12.6. We focus on intersection multiplicities Io( f,g) at the origin in this
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section. In §15, we determine intersection multiplicities Ip(F, G) at any
point P in the projective plane.

We work over the complex numbers from now through the end of Section
15. In particular, we work over the complex numbers in determining
Io(f,g) and Ip(F, G) even when the polynomials f, g, F, G have real co-
efficients and the point P has real coordinates. As we observed before
Theorem 11.1, this ensures that polynomials with real coefficients inter-
sect the same number of times at points with real coordinates whether
the polynomials represent curves in the real or the complex projective
plane. Once we derive the Intersection Properties 1.1-1.6, 3.1, and 3.5
over the complex numbers, they hold automatically over the real num-
bers.

Theorem 1.11 determines intersection multiplicities at the origin that
involve a curve of the form y = p(x) for a polynomial p(x) without a con-
stant term. We generalize this by parametrizing curves at the origin with
expressions

x=t%  y=plt) (1)
for an indeterminate t we call a parameter, a positive integer d, and a
power series p(t) without a constant term. We prove that any nonzero
curve f gives rise to finitely many parametrizations of the form (1) or

, y==t (2)

These parametrizations determine Io(f,g) for any curve g by analogy
with Theorem 1.11. The term “parametrization,” which we use infor-
mally in this section, is defined precisely in §15.

A power series p(t) is an expression of the form

x=0

plt) =) at' =ao+at+at’ +---, (3)

where the a; are complex numbers for all nonnegative integers i. Of
course, we write t® as 1 and ¢! as t. We call a;t' the term of degree i with
coefficient a;. We call ag the constant term of p(t). Because we do not con-
sider convergence of power series, we cannot substitute nonzero num-
bers for t.

We generally omit terms with coefficient zero from (3). We call the
power series (3) constant if a; = 0 for all i > 0. We call (3) identically zero
and write p(t) = 0 if a; = 0 for all integers 1.

If a power series p(t) is not identically zero, its order o,p(t) is the
smallest degree of a nonzero term of p(t). Thus, a power series of order
s has the form

aStS 4 as+1ts+1 R

for as # 0. For instance, a power series has order 0 if it has nonzero con-
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stant term ag, and a power series has order 1 if it has the form
a1t+a2t2+~~

for a; # 0. If a power series is identically zero, we say that it has order oo.
We add power series in the natural way by adding the coefficients of
terms of the same degree:

Z ait' + Z hit' = Z (a; + bt

When we expand the product

(Z aiti) (Z bjtf) (4)

in the natural way, the terms of degree [ are
ao(bit!) + (@) (bat'™) 4 -+ (aat™ ) (bit) + (@t)by
= (aoh+ by + -+ ai by + aby)t’. (5)

The product of the power series in (4) is the power series > ¢t whose
term cit' of degree [ is the right side of (5) for each integer I > 0. In other
words, the product (4) is

aobo + (aobi + arbo)t + (aohy + a1by + azbo)t> + -+ -

Because we can add and multiply power series, we can substitute
them for the variables in a polynomial f(x, y). Let f(x, y) have constant
term zero and nonzero y term, which means that

fioy) =hx+ky+ Y ex'y’ (6)

for complex numbers h, k, and e;, where k # 0 and the sum runs over
pairs of nonnegative integers i and j with i 4 j > 2. We claim that there
is a power series

px) = arx + azx® + azx® + - - (7)

without a constant term such that

f(x, p(x)) = 0. (8)
Substituting (7) for y in (6) and collecting terms shows that any power x'
of x in f(x, p(x)) has coefficient ka; plus a polynomial in aj,...,a; 1.

Since k # 0, we can determine the a; recursively so that Equation (8)
holds.
For example, consider

flr,y) =x =2 + 2y —xy + 1, (9)
which has constant term zero and nonzero y term 2y. Substituting

p(x) = ax +bx* +cx® +dx* + - -
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for y in (9) and collecting terms of degree at most 4 gives
(2a+4+1)x+ (2b —a)x* + (2c — 1 — b +a®)x®
+(2d — ¢ + 3a*b)x* +---. (10)

Equation (8) holds when the coefficients of all powers of x in (10) equal
zero. The x term gives a = —1. The x* term gives 2b+1=0, b= —1.
The x* term gives 2c—1+1—-1/8=0, ¢c=7/16. The x* term gives
2d —7/16 —3/16 =0, d = 5/16. Continuing in this way gives a power
series
1 1, 7 4 5,
v — = e 11
p(x) SX X e e T (11)

that has constant term zero and satisfies (8) for f in (9).

A power-polynomial u(x, y) is a polynomial in y whose coefficients are
power series in x. That is, we have

ux,y) =Y Xy’

for power series ¢;(x) in x, where the exponents j of y range over a finite
number of nonnegative integers. We refer to the constant term of the
power series co(x) as the constant term of the power-polynomial u(x, y).
Note that x can appear to infinitely many powers in a power-polynomial
u(x, y), but y cannot.

Let f(x, y) be a polynomial and let p(x) be a power series such that
f(x, p(x)) = 0. Long division with respect to y shows that

fx, y) = (y — p(x))ulx, y) (12)

for a power-polynomial u(x, y), by the proof of Theorem 1.9. If f(x, y)
has a nonzero y term and p(x) has no constant term, (12) implies that
u(x, y) has a nonzero constant term. For example, f(x, y) in (9) and p(x)
in (11) give Equation (12) for u(x, y) with constant term 2. In fact, equat-
ing the coefficients of powers of y on the right-hand sides of (9) and (12)
gives

uxy) =y +pNy+(2—x+ px)?

— y2+(1x1x2 +7x3+~~>y+(2x+1x2 +1X3+'~~),
2 4 16 4 4
by (11).

If p(t) and ¢(t) are nonzero power series in t, then their product
p(t)g(t) is also nonzero. In fact, if the terms of least degree in p(t) and
q(t) are at® and bt' for nonzero complex numbers a and b, then abt* is
the term of least degree in p(t)q(t), where ab # 0 by (24) of §10. More-
over, we see that

0i(p(1)q(1)) = ocp(t) + 0.q(1), (13)
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since both sides of (13) equal k 4 I. Equation (13) still holds when p(t) or

q(t) is identically zero, since both sides of (13) equal oo in this case.
Generalizing the form of the polynomial f(x, y) in (6) shows why we

may need to set x = t% for d > 1 in (1). Assume that f(x, y) has a nonzero

y" term for a positive integer r, no constant term, and no x'y’ terms for

i>0and0 < j<r. Setting x =t" lets us recursively find the coefficients

of a power series p(t) with constant term zero such that f(t", p(t)) = 0.
For example, consider

flx,y) =4x° — y* + x> + °. (14)

The conditions of the last paragraph hold for r = 2, since f has a nonzero
y? term —y?, no constant term, and no x'y terms for i > 0. Looking at
terms of degree 2 or 3 in x shows that no power series p(x) without a con-
stant term makes f(x, p(x)) zero. On the other hand, setting x = t2 in (14)
gives

f(ty) = 4t° — y* + °y* + o, (15)
and there is a power series p(t) with constant term zero such that
f(t2, p(t) = 0. (16)
The form of (15) suggests taking
plt) =at® +bt°> +ctb +adt” +---. (17)

(Including the missing terms of degrees 1, 2, and 4 in (17) leads to their
coeflicients being zero. Anticipating this saves work.)

Substituting (17) for y in (15) and collecting terms of degree at most
10 gives

(—a® + 4)t5 + (=2ab + a*)t® + (—2ac + a*)t°
+ (—2ad — b? + 2ab)t** 4 - .. (18)

Equation (16) holds when each term in (18) has coefficient zero. The t°
term vanishes when a? = 4, a = +2, and we arbitrarily choose a = 2. Set-
ting a = 2 in the t® term gives —4b+4 =0, b = 1. The t° term vanishes
when —4c+8 =0, ¢ =2. The t'° term gives —4d —1+4 =0, d = 3/4.
Continuing in this way shows that Equation (16) holds for

3
p(t>=2t3+t5+2t6+zt7+.... (19)
Since (—t)? = t?, substituting —¢ for ¢ in (16) and (19) gives
f(£%,4(1)) =0 (20)
for \
‘Z(t):p(—f>=—2t3—t5+2t6—1t7+.... (21)

Taking a = —2 in the previous paragraph also gives (21).
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Long division with respect to y shows that

f(t%, y) = (y - p(t)g(t, y) (22)

for a power-polynomial g(t, y), by (16) and the proof of Theorem 1.9.
Since (19) and (21) show that

q(t) — p(t) = —4t> + -

is nonzero, substituting g(¢) for y in (22) shows that

g(t,q(t)) =0, (23)

by (20) and the discussion before (13). Long division with respect to y
shows that

gt y) = (y — q(t)ult, y) (24)

for a power-polynomial u(t, y), by (23) and the proof of Theorem 1.9.
Substituting (24) in (22) gives

(2, y) = (y— p(0)(y — a)ult, y). (25)

Since p(t) and ¢(t) have no constant terms (by (19) and (21)), comparing
the y? terms on the right-hand sides of (15) and (25) shows that u(t, y)
has constant term —1. In fact, comparing both the y® and the y? terms
shows that

ult,y) =y—1+t"+ p(t) +q(1)
=y—14+t> 445 4.,

by (19) and (21).

It is remarkable that factorizations analogous to (25) hold for all poly-
nomials f(x, y), whether or not they have the form described before (14).
In effect, we can factor a polynomial f(x, y) completely at the origin by
using power series and replacing x with a power of a parameter.

Theorem 14.1
For any nonzero polynomial f(x, y), there is a positive integer d such that

fth y) =ty —pi(t) - (y — p)ult, y) (26)

for nonnegative integers k and r, power series pi(t), ..., p,(t) without con-
stant terms, and a power-polynomial u(t, y) with a nonzero constant term.

O

The factorizations (12) and (25) are examples of Theorem 14.1 with
k = 0. The factors y — p;(t) in (26) correspond to parametrizations (1) of
f(x, y). Factors of t in (26) arise from factors of x in f(x, y), which corre-
spond to parametrizations (2). Because the factor u(t,y) in (26) has a
nonzero constant term, it does not correspond to parametrizations of f
near the origin.
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We postpone the proof of Theorem 14.1 to the latter half of this sec-
tion, preferring first to use the theorem to determine intersection multi-
plicities Io(f,g) and derive their properties. We need to know that, for
a given integer d, the factorization (26) is unique up to the order of the
factors y — p;(t). We start by proving that we can cancel nonzero power-
polynomials.

Theorem 14.2
Let u(x, y) be a nonzero power-polynomial.

(i) If v(x, y) is a nonzero power-polynomial, then so is u(x, y)v(x, y).
(ii) If h(x, y) and k(x, y) are power-polynomials such that uh = uk, then h
equals k.

Proof
(i) Let y™ and y" be the highest powers of y that appear in u(x, y) and
v(x, y). Their coefficients are nonzero power series p(x) and g(x). Then
the coefficient of y™" in u(x, y)v(x, y) is p(x)q(x), which is nonzero by
the discussion before (13).

(ii) Because u(h — k) = 0, part (i) implies that h = k. O

In Theorem 14.1, we have k = dh, where x" is the highest power of
x that can be factored out of f(x, y). Thus, k is uniquely determined by
the choice of d. Because u(t, y) has a nonzero constant term and the
pi(t) do not, the number r of factors y — p;(x) in (26) is the least positive
integer such that f(x, y) has a nonzero x"y” term. Thus, the value of r is
uniquely determined. In fact, choosing d determines the whole factoriza-
tion (26).

Theorem 14.3
For any nonzero polynomial f(x,y) and positive integer d, there is at most
one factorization of f(t%, y) in the form (26).

Proof
Suppose that we have the factorization of f(t¢, y) in (26) and also an-
other factorization

Fithy) =ty —aq(t) - (y — gs(t)v(t, y)

for nonnegative integers [ and s, power series qi(t),...,qs(t) without
constant terms, and a power-polynomial v(¢, y) with a nonzero constant
term. Equating the two factorizations of f(t¢, y) gives

My = pi(1) - (y = prO)ult, y)
=ty —aq() - (y — gs(D)v(t, y). (27)
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The discussion before the theorem shows that k =1 and r = s. Since
k =1, we can cancel the powers of t on both sides of (27). If r and s are
positive, substituting p;(t) for y in (27) shows that

(p1(t) — qu(t)) -+ (1 (t) — gs(t))v(t, p1(t)) = O. (28)

Note that v(t, p;(t)) is nonzero because v(t, y) has a nonzero constant
term and p;(t) does not. It follows that pi(t) = g, (t) for some w (by (28)
and the discussion before (13)), and so we can cancel the equal factors
y—pi(t) and y — qu(t) in (27) (by Theorem 14.2(ii)). We continue in
this way to cancel equal factors y — p;(t) and y — g;(t) from (27) until
we eliminate them all and are left with u(t, y) = v(t, y). O

Taking h = 0 in the paragraph before Theorem 14.3 gives the follow-
ing useful observation: when a polynomial f(x, y) does not have x as a fac-
tor, the number v of factors y — pi(x) in Theorem 14.1 is the least exponent on
y in a term of f without x. For example, that term in (14) is —y?, and (25)
has two factors y — p(t) and y — ¢(t).

Although Theorem 14.3 shows that the factorization (26) is unique
when the value of d is given, that value can vary. For any positive inte-
ger m, substituting t™ for ¢ in (26) gives

f(tdm, y) _ tkm<y _ p1(fm>) .. (y _ py(tm))u“m, y),

which satisfies the conditions of Theorem 14.1 with d replaced by dm.
This observation lets us compare factorizations of the form (26) for dif-
ferent integers d by replacing these integers with a common multiple
and using Theorem 14.3.

Note that

0:p(t™) = mo¢ p(t) (29)

for any power series p(t) and any positive integer m. In fact, if t" is the
least power of t appearing in p(t), then t"™ is the least power in p(t"),
and both sides of (29) equal rm. Both sides of (29) equal co when p(t) is
Zero.

Theorem 1.11 states that

Io(f,g) = oxg(x, p(x))

when f(x,y) = y — p(x) for a polynomial p(x) without a constant term.
Theorem 14.1 lets us generalize this to any nonzero polynomial f(x, y).

1
Each factor y — pi(x) in (26) contributes aotg(td,pi(t)) to In(f,g), and
1
each factor t—which represents the line t+ = 0—contributes aoyg(O, Y).

We have divided these contributions by d to compensate for replacing x
with t? in (26). Because the factor u(t, y) in (26) has nonzero constant
term, it does not contribute to Io(f, g) (by analogy with Theorem 1.8).
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Definition 14.4
Let f(x, y) and g(x, y) be polynomials. If f is nonzero, set

Iolf.8) = 50,800, 5) + 537 0iglt”, pilt (30)

in the notation of Theorem 14.1, where the sum in (30) runs over the
integers i from 1 through r. Set I5(0,g) equal to oo or 0 depending on
whether or not g contains the origin O. O

Because the right side of (30) is a sum of nonnegative terms, it is
defined even when one or more terms is co. When there are no factors

k
of t in (26), we have k = 0 and we take Eoyg(o,y) to be zero in (30), even
when g(0, y) is the zero polynomial and so has order co. Likewise, when

there are no factors y — p;(t) in (26), we take lz 0:g(t%, pi(t)) in (30) to
be zero. d

To check that Definition 14.4 is valid, suppose that f is nonzero and
that, in addition to the factorization (26), we have

fte,y) =ty — (D) - (y — g5(D)v(t, y) (31)

for a positive integer e, nonnegative integers [ and s, power series g;(t)
without constant terms, and a power-polynomial v(¢, y) with a nonzero
constant term. Substituting t¢ for ¢ in (26) gives

F(t%, y) =ty = pr(t9)) -+ (y — prlt)ult’, y), (32)
and substituting t¢ for t in (31) gives
F(t%, y) =ty — qu(t?) - (y = qs(t)v(t?, y). (33)

By Theorem 14.3, Equations (32) and (33) imply that ke =1d and r = s
and that p,(t9), ..., p,(t% equal q,(t%), ..., gs(t%) in some order. It follows
that

ke
20080, Y) + Z 0:8(t%, pi(t%))

Id
=080, ) + Z 0:8(t%, q;(t")). (34)

Equation (29) shows that
0:g(t%, pi(t°)) = eo.g(t”, pi(1))

and

0:8(t%, q;(t%)) = doig(t*, qj(1)).
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Thus, Equation (34) simplifies to

k 1
aoyg(O, Y+ az 0.8(t%, pi(t))

I 1
= EOyé’(O, Y) +EZ 0:g(t%, q;(t)).

This shows that both factorizations (26) and (31) give the same value for
Io(f,g), and so Definition 14.4 is valid.

To illustrate Definition 14.4, we use it to find Ip( f, g) for f(x, y) in (14)
and

glxy) =x° +y° (35)
Equation (25) corresponds to Equation (26) with d = 2, k=0, and r = 2.
Definition 14.4 gives

Iol,) = 30ig(1%, plt) + 50u8( (1)

= %ot[tﬁ + (26 + )7 +%0t[t6 + (=262 + )4
(by (35), (19), and (21))
:%Ot(StG +) —i—%ot(Stﬁ +--)

=6/246/2=6.

Of course, the methods of Section 1 give the same result without using
power series:

Io(f,g) =Io(f —4g,g) (by Properties 1.2 and 1.5)
=Io(—5y* +xy* +y°,x° +y?) (by (14) and (35))
=Io(y* (-5 +x+y),x’ +y°)

=Io(y* x* +y* (by Theorem 1.8 and Property 1.2)

=Io(y* x*) (by Property 1.5)

=6Ip(y,x) =6 (by Properties 1.6, 1.2, and 1.4).

It is clear from Definition 14.4 that Io(f,g) is a nonnegative rational
number or oo, but it is not clear that the only rational values Io(f,g)
takes are integers. That result (Property 1.1) will follow in §15 from the
definition of Ip(F, G) for any point P in the projective plane and from the
agreement of that definition with Definition 14.4 at the origin (Property
3.1).
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Once we have proved that Ip(f,g) is a nonnegative integer or oo, the
next result gives Property 1.3.

Theorem 14.5
Io(f, g) is greater than zero if and only if f and g both contain the origin.

Proof

The theorem holds when f is zero, by the last sentence of Definition
14.4. Assume that f is nonzero, and so Theorem 14.1 gives a factoriza-
tion (26). If f does not contain the origin, the integers k and r in (26)
are zero, and so is Ip( f, g) (as discussed after Definition 14.4).

If g does not contain the origin, then g(x, y) has a nonzero constant
term, and so do g(0, y) and the power series g(t4, pi(t)) (since the p;(t)
in (26) have no constant terms). Then 0,g(0, y) and the 0:g(t%, pi(t)) are
zero, and so is Io( f, g) (by (30)).

Suppose that f and g both contain the origin. At least one of the inte-
gers k and v in (26) is positive (since f contains the origin), and the
orders of g(0,y) and the power series g(t%, pi(t)) are all greater than
zero (since g(x, y) and the p;(t) have no constant terms). Thus, Io(f,g)
is greater than zero (by (30)). O

When f is the polynomial x, the factorization (26) holds for d =1,
k=1, r=0, and u(t, y) = 1. Substituting these values in Definition 14.4
when g is the polynomial y shows that Ip(x, y) = o,y = 1, and so Prop-
erty 1.4 holds.

Next we derive Property 1.5, which states that

Since g+ fh equals g when f is zero, we can assume that f is nonzero.
Theorem 14.1 gives a factorization (26). Equation (36) follows from (30)
and the two equations

k k
705800, y) = = 0,[8(0, y) + £(0, y)(0, )], (37)
0:g(t?, pi(t)) = o.lg(t?, pi(t) + F(t4, pi(O)R(t?, pi(t))]. (38)

Equation (37) holds because (26) shows that either k = 0 or f(0, y) = 0.
Equation (38) holds because (26) shows that f(t% p;(t)) is zero. Thus,
Property 1.5 holds.

Property 1.6 states that

Io(f,gh) = Io(f,8) + Io(f, h). (39)

When f is zero, Equation (39) follows from the last sentence of Defini-
tion 14.4: both sides of (39) are oo if g or h contains the origin, and both
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sides of (39) are zero if neither g nor h contains the origin. When f is
nonzero, Theorem 14.1 gives a factorization (26). Equation (39) follows
from (30) and the two equations

Oy[g<05 y)h<07 y)] = Oyg(os y) + Oyh<07 y):

oc[g(t?, pit)h(t?, pi(1)] = 0,g(t?, pi(t)) + o.h(t?, pi(t)),

which hold by (13). This proves Property 1.6.
Property 1.2 states that In(f, g) = Io(g, f). We prove this by finding an
expression for Ip( f, g) that is symmetric in f and g.

Theorem 14.6
Let f(x,y) and g(x,y) be nonzero polynomials. Let d be a positive integer
such that

it y) =ty —pi() - (y — pt)ult, y) (40)
and
gt y) =ty —aq(t) - (y—a)vt,y) (41)

for nonnegative integers k, r, I, and s, power series pi(t) and g;(t) without
constant terms, and power-polynomials u(t, y) and v(t, y) with nonzero con-
stant terms. Then Io( f, g) equals

k I 1
20,800.9) + 20,60, ) + 23" olpilt) — (0, (42)
where the sum runs all pairs of integers iandjwithi <i<randi < j<s.

As in the remarks after Definition 14.4, we take the first term in (42)
to be 0 when k = 0 (even if 0,g(0, y) = o), the second term in (42) to be
0 when [ = 0, and the third term to be 0 when » = 0 or s = 0.

Proof
Definition 14.4 shows that

k
Io(f,8) =50,8(0, ) + Z org(t?, pilt (43)

where the sum runs over the integers i from 1 through r. Substituting
pi(t) for y in (41) gives

g(t?, pi(0) = t(pi(0) = qa (1)) - -~ (pilt) = gs(0)lt, pi(D)). (44)

Note that v(t, p;(t)) has order 0 because p;(t) has no constant term but
v(t, y) does. Thus, applying (13) to (44) shows that

0.g(t? —Z+Z o[ pi(t) — q;(t)],

where the sum runs over the integers j from 1 through s. Using this
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equation to substitute in (43) shows that I5(f, g) equals

R0y, + 54 137 op) - ao), (15)
where the sum runs over all pairs of integers i and j.

We claim that (42) equals (45). These expressions differ only in their
middle terms. When [ =0, (42) and (45) are equal because they both
have middle term zero. When k = 0, (40) shows that y" is the least power
of y in a term of f(t4, y) without t (as noted after the proof of Theorem
14.3); this shows that 0,f(0, y) = 7, and so (42) equals (45). Finally, when
k and [ are both positive, (42) and (45) are equal because their common

k .
first term aoyg((), Y) is 0. O

The last theorem yields Property 1.2, which states that Ip( f, g) is sym-
metric in f and g.

Theorem 14.7
For any polynomials f(x, y) and g(x, y), we have

Io(f,8) = Io(g, f). (46)

Proof

Suppose first that f and g are both nonzero. We get factorizations as in
Theorem 14.1 by substituting x = t™ in f and x =t" in g for integers m
and n. As in the discussion after Theorem 14.3, we get factorizations
(40) and (41) for d = mn. Interchanging f with g in Theorem 14.6 inter-
changes k with [ and the p;(t) with the g;(t). This leaves the value of (42)
unchanged, and so (46) holds.

Equation (46) is obvious when f and g are both zero. When either f or
g does not contain the origin, both sides of (46) equal 0, by Theorem
14.5.

The only case remaining is where one of the curves f or g is zero and
the other is nonzero and contains the origin. By the symmetry of (46) in
f and g, we can assume that g is zero and that f is nonzero and contains
the origin. In the notation of (26), k or r is positive (since f contains the
origin). Then Definition 14.4 gives Io( f, 0) = o0, since the zero power se-
ries has order oo. On the other hand, the last sentence of Definition 14.4
shows that I(0, f) = co when f contains the origin. Thus, Equation (46)
holds in this case, as well. O

Once we prove in §15 that Ip(f,g) is an integer when it is finite, we
will have proved all the Intersection Properties 1.1-1.6 in §1. We devote
the rest of this section to proving Theorem 14.1. We must show that
there is a factorization of the form (26) for every nonzero polynomial
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f(x, y), not just those that meet the conditions in the paragraph before
(14).

Let f(x,y) be a polynomial that has no constant term and does not
have x as a factor. Let y” be the least power of y in a term of f without
x. For each integer i > 0, let m; be the least integer such that f has a non-
zero x™iy' term, and set m; = oo if f has no terms where y' appears. Let
v be the smallest value of m;/(r — i) for i less than r.

Assume that v is a positive integer. We take a complex number a such
that the terms in f(x, ax’) of least degree —namely, degree vr—cancel.
Factoring x" out of f(x, x"(a + z)) for an indeterminate z leaves a polyno-
mial g(x, z) that has no constant term and has a z" term without x. We
replace f(x,y) with g(x,z) and repeat the process, unless we can use
the discussion before (14) as a shortcut.

For example, consider

flx,y) =x* =2+ 22y — 2’y +y* + 2y°. (47)

We have r = 2, since y? is the least power of y in a term without x.
The discussion before (14) does not apply because of the x*y and x3y
terms. Evaluating m;/(r —i) for i <r =2 gives my/r =4/2 =2, and
my/(r —1) = 2/1 = 2, and the common value v = 2 is an integer. Substi-
tuting ax¥ = ax? for y in (47) gives
Xt — x5 4 2ax* — ax® + a’x* + 2a°x°.
The terms of least degree vr = 4 cancel for 1 +2a+a? =0, (a+1)%2 =0,
a=—1.
Substituting
y=x"(a+z) =x*(-1+2) (48)
in (47) and canceling ¥ = x* from every term gives
1—x42(=142) —x(—1+2) +(=1+42)2 4+ 223 (-1 + 2)%.
This reduces to
—2x% — xz + 6x%z + 2% — 6x%z% 4 2x%2°. (49)
We apply the same process to (49). We have v = 2 in (49) because z? is
the least power of z in a term without x. The discussion before (14) does
not apply because of the xz and x?z terms. Evaluating m;/(r —1i) for

i<r=2gives my/r=2/2=1 and m;/(r —1) =1/1 =1, and the com-
mon value v = 1 is an integer. Substituting ax’ = ax for z in (49) gives

—2x* — ax* 4 6ax> + a’x* — 6a*x* + 2a°x°.
The terms of least degree vr=2 cancel for —2-—a+a?=0,

(a—2)(a+1)=0,a=2o0ra=-1.
For a = 2, substituting

z=x"(a+w)=x2+w) (50)



§14. Parametrizations at the Origin 263

in (49) and canceling ¥ = x2 gives
2—24w +6x2+w) +2+w?—6x*24+w)?+2x32 +w).
This simplifies to
12x — 24x* + 16x° 4 3w + 6xw — 24x*w + 24x°w
+ w? — 6x%w? + 12x3w? + 2x3w3. (51)

Because of the 3w term, we can use the discussion of (6) to get a power
series

32 272

w=—dx+—=x* - X3 .
+3 9 +

that makes (51) zero. Substituting in (50) gives a power series
32 272
z=2x —4x? 23 - 2%
3 9
that makes (49) zero. Substituting for z in (48) gives a power series

32 5 272
_X —_——

6
52
3 g X T (52)

y=pi(x) = x> +2x° —4x* +
that makes (47) zero.
The other possibility a = —1 we found before (50) gives
z=x"(a+w)=x-1+w). (53)
Substituting in (49) and canceling x" = x? gives
—2— (=14 w) +6x(—14+w) +(—1+w)?
—6x3 (=1 +w)? +2x3 (-1 4+ w)>.
This simplifies to
—6x — 6x” — 2 — 3w + 6xw + 12x"w + 6x°w
+w? — 6x*w? — 6x3w? + 2x°ws. (54)

Because of the —3w term, we can use the discussion of (6) to get

14 , 106 ,
w=—2x——x"——x" +--
3 9
Substituting in (53) gives
14 106
z=—x—22"——x ——x*+...

3 9 ’
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and then substituting in (48) gives a power series

14 106
y:pz(x):—xz—x3—2x4—?x5—?x6+~- (55)
that makes (47) zero.
Combining the last two paragraphs with the proof of Theorem 1.9
shows that

fx, y) = (y — p1(0)(y — p2(¥))ulx, y) (56)

for a power-polynomial u(x, y). Because f has a y? term and both p;(x)
and p,(x) have no constant terms, u(x, y) has a nonzero constant term,
and (56) is a factorization of the form (26). In fact, comparing the y?
and y? terms of (47) and (56) gives

ulx, y) =2y + 1+ 2p1(x) + 2pa(x)
=2y+1—4x*+2x% —12x* + .-,

by (52) and (55).

As we noted after the proof of Theorem 14.3, if y” is the least power of
Yy in a term without x in a polynomial f(x, y), then r is the number of
factors y — pi(x) in (26). Equations (47) and (56) illustrate this for r = 2.

Returning to general notation, we take f(x, y), r, and v as in the sec-
ond paragraph after the proof of Theorem 14.7. Instead of assuming that
v is a positive integer, we now let v be a fraction k/I in lowest terms for
positive integers k and L. Substituting ¢’ for x lets us apply the third para-
graph after the proof of Theorem 14.7 with k in place of v. Thus, there is
a complex number a such that the terms of least degree in f(t!, at*)—
namely, degree kr—cancel. Factoring t* out of f(t!,t"(a + z)) leaves a
polynomial g(t,z) that has no constant term and has a z" term without
t. We repeat the process with g in place of f, unless the discussion before
(14) applies.

For example, consider

flx,y) =2+ 4xy + x*y — y°> + y*. (57)

We have r = 3, and the discussion before (14) does not apply. Evaluating
mi/(r —i) for i<r=3 gives my/r=3/3=1, m/(r—1)=1/2, and
m, = oo (since there are no y? terms). The smallest of these three values
is v = 1/2, which gives k = 1 and [ = 2. Setting x = t! = t? in (57) gives

f(£?, y) =t° + 4ty + 'y — y® + y*. (58)
Substituting at* = at for y in (58) gives
t + aat® + at® — a3 + attt.

The terms of least degree kr = 3 cancel for 4a — a® = 0, and so a is +2 or
0.
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For a = 2, substituting
y=ta+z) =t2+2z) (59)

in (58) and canceling t"" = t3 from every term gives

34 4242)+t2242) —2+2)°3+t(2+2)"
This simplifies to

16t 4 2t% + 2 — 8z + 32tz + t*z — 62° + 24tz°

— 2% 4+ 8tz° 4 tz*.
Because of the —8z term, the discussion of (6) gives
133

2t+21t2+ B+
Z: —_— — o e
4 8

Substituting this for z in (59) gives a power series
21 133
y:pl(t):2f+2t2+1t3+?t4+... (60)

such that
(£, pa(1)) = 0. (61)
Since (—t)? = t?, substituting —t for ¢t in (60) and (61) shows that
f(t2, pa(t)) = 0 for
133 ,

21
pz(f)Zpl(—f)=—2t+2t2—zt3+?t 4o (62)

The possibility a = —2 found before (59) also gives p,(t).
The last possibility a = 0 we found before (59) gives

y=tNa+z) =tz (63)
Substituting in (58) and canceling t*" = t3 from every term gives
3+ 4z 4+ t2z — 25 + tz*. (64)
Because of the 4z term, the discussion of (6) yields
1 1 1 3
z= —Zt3 +Et5 _@t7 +ﬁt“ -
Substituting this for z in (63) shows that

1 3
82 (65)

1 4 1 6
y=rt) =30+ 5t 5t T om

makes (58) zero.
Because of the —y3 term in (58), the last three paragraphs imply that

(2, y) = (y— ;i) (y — p2()(y — p3()ult, y) (66)
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for a power-polynomial u(t,y) with a nonzero constant term. In fact,
comparing the y* and y* terms of (58) and (66) gives

u(t,y) =y — 1+ pi(t) + pa(t) + pa(t)
=y—1+4t2 +33t + .

Part (i) of the next theorem formalizes the discussion before (57) and
generalizes it from polynomials f(x, y) to power-polynomials. This gen-
eralization lets us prove Theorem 14.1 by finding the factors y — p;(t) in
(26) one at a time: even if we start with a polynomial f(x, y), once we
write

f(t4 y) = (y = pe)h(t, y)

for a positive integer d, a power series p(t), and a power-polynomial
h(t, y), we continue with h in place of f.

Part (ii) of the next theorem limits the need to use the paragraph be-
fore (57) instead of the paragraph before (47). Part (iii) quickly handles
the case v = 0.

Recall that a power series has order greater than 0 when it has no con-
stant term. A power series has order oo when it is identically zero.

Theorem 14.8
Let

fry) =D b0y’ (67)

be a power-polynomial for power series b;(x). Set m; = o,b;(x) for each i. As-
sume that m, = 0 for a positive integer v and that m; > 0 for 0 <i < r. Letv
be the minimum value of m;/(r —i) for 0 <i <r.

(1) Ifv < oo, then v is a fraction k/1 in lowest terms for positive integers k
and 1. There is a complex number a such that the terms of least degree kr
in f(t', at®) cancel. We can write

ft',ta+2)) = t"g(t,2) (68)
for a power-polynomial

gltz) =) cit), (69)

where the c;(t) are power series and there is a positive integer s < 7 such
that c(t) has order 0 and each c;(t) for 0 < i < s has order greater than
0.

(ii) IfI>11in (i), then s < 7.

(iii) If v = oo, then f(x,0) is identically zero.

Proof
(i) For any integer i with 0 <1i < r, the quantity m;/(r — i) is a positive
rational number or oo. Because we are assuming that the smallest value
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v of these quantities is finite, it is a positive rational number. Write
v =k/l in lowest terms for positive integers k and I. For any complex
number a, substituting x = t' and y = t"(a + z) in (67) gives

f(t,tMa+2) = bt (a+2)". (70)
We have
0/[bi(t) "] = Im; + ki (71)

We claim that kr is the minimum value of (71) for all integers i. In
fact, (71) equals kr for i =r (since m, =0). For i >r, (71) is greater
than kr. For 0 < i < r, the fact that

mi/(r—i) =v=Kk/l (72)
means that
Im; = k(r —1),

and so (71) is at least kr. Thus, we can factor t out of (70) and get a
power-polynomial g(t, z) as in (68) and (69).
For each integer i, the previous paragraph lets us write

bi(tht" = e;t™ + terms of degree > kr (73)

for a complex number e;. The second sentence of the previous paragraph
shows that

e, #0, (74)
and the third sentence shows that
e, =0 fori>r. (75)
Then

Z eiat =0 (76)

is a polynomial equation in a of degree r > 0, and we take a to be a root
of this equation in the complex numbers (by the Fundamental Theorem
of Algebra 10.1). Equation (76) says exactly that the terms in f(t, at*) of
least degree —namely, degree kr—cancel, by (70) with z =0, (73), and
(74).

Equations (68), (70), and (73) imply that

gt z) = Z eila+ z)' + terms involving . (77)

Equations (76) and (77) show that g(t,z) has no constant term. Accord-
ingly, in the notation of (69), we have

0:Co(t) > 0. (78)
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Since (74) and (75) show that z" has nonzero coefficient ¢, in the expan-
sion of

Z eila+z), (79)

(69) and (77) show that ¢,(t) has nonzero constant term e,. Thus, ¢,(t) has
order 0. Together with (78), this implies that there is a positive integer
s < r such that ¢s(t) has order 0 and each c¢;(t) for 0 <i < s has order
greater than 0.

(ii) When [ > 1, we claim that the expansion of (79) has a nonzero z
term for an integer d < r. If so, ¢4(t) has a nonzero constant term, by (69)
and (77). Then the integer s in (i) is less than r, as desired.

To prove the claim, note that equality does not hold in (72) for
i=r—1 and [ > 1, since the first quantity in (72) is an integer or oo
and the last quantity is not. The discussion after (72) shows that (71) is
greater than kr for i =r — 1, and so ¢,_; = 0 (by (73)). Then z’~! has co-
efficient re,a in the expansion of (79) (by (75)), and this coefficient is
nonzero if a # 0 (by (74)). Thus, the claim holds when a # 0.

On the other hand, v equals m,/(r — g) for an integer g less than r.
The discussion after (72) shows that (71) equals kr for i = g, and so ¢, is
nonzero (by (73)). Accordingly, (79) has a nonzero z4 term if a = 0, and
the claim holds for a = 0.

(iii) If v = oo, then my is oo, and by(x) is identically zero. Thus, (67)
becomes zero when we set y = 0. O

d

In the notation of Theorem 14.8(i), assume that g(s¢% ¢g(s)) = 0 for an
indeterminate s, a positive integer e, and a power series g(s). Substituting
t = s and z = ¢(s) in (68) shows that

f(s9, 5% (a +q(s))) = s™g(s%,q(s)) = 0.

Thus, we have f(s? p(s)) =0 for the positive integer d = el and the
power series
pls) = as™ + s%q(s)

without a constant term.

The previous paragraph lets us recursively replace f(x, y) with g(t, z)
in Theorem 14.8(i) to find one of the factors y — p;(t) in Theorem 14.1.
Theorem 14.8(ii) guarantees that we do not need to substitute ever
higher powers of a parameter for x as we proceed recursively, even if
we do not use the discussion before (14) as a shortcut.

Let f(x, y) = > bi(x)y' be a power-polynomial. We say that f is general
of order v if v is a positive integer such that b,(x) has a nonzero constant
term and the b;(x) have no constant terms for 0 < i < r. In this terminol-
ogy, Theorem 14.8 starts with a power-polynomial f(x,y) general of
order v and produces in (i) a power-polynomial g(t, z) general of order
s<r.
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Theorem 14.9

Let f(x,y) be a power-polynomial that is general of order v. Then there is a
power series p(t) without a constant term and there is a positive integer d
such that f(t%, p(t)) = 0.

Proof
We recursively determine power-polynomials f,(x, y) and positive inte-
gers 1, such that f,(x, y) is general of order r,. We start with f; = f and
r1 = r. Assume that we have determined f(x, y) and r; for a positive inte-
ger j. Applying Theorem 14.8(i) and (iii) with f; in place of f shows that
either

fi(x,0) =0 (80)

or there is a complex number g; and there are positive integers k; and [;
such that the fraction k;/I; is in lowest terms and

fixh, 28 + ) = 2" (%, y) (81)

for a positive integer h; and a power-polynomial fi,,(x, y) that is general
of order r;;; for a positive integer vj:+1 < r;. The recursive definition of
the f,(x, y) ends with u = j when (80) holds, and it continues with
u = j+ 1 when (81) holds.

Assume first that the recursion never ends and that [; = 1 for every
positive integer j. Taking j =1 in (81) gives

flx,amx™ +xMy) = 2" fi(x, y),
since fi = f and I, = 1. Substituting x**(a, + y) for y gives
Flx, anxh  agaithe 4 xlitkey)
= X" f(x, %" (az + y))
= K" f ()
by (81) with j = 2 and I, = 1. Substituting x**(az +y) for y gives
Flx, a4 agahitRe | qaxhithaths | kitkotks )
= xR f(x, X (a3 + y))
= A (3, )
by (81) with j = 3 and I3 = 1. Continuing in this way shows that
Fxy axh + apxhithe 4o g it 4 gkitethg)
=K/t G (%, y)

for every positive integer u. Since the h; and k; are positive integers, it
follows that f(x, p(x)) has no terms of degree less than u for the power
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series
p(X) — alxk‘ + 612Xk1+k2 + agxk‘+k2+k3 4+ .-

without a constant term. Because this holds for every positive integer u,
f(x, p(x)) is identically zero, as desired.

Suppose next that there are positive integers n and e and a power se-
ries ¢(t) such that

fa(t%,q(t)) = 0.

We use the first paragraph after the proof of Theorem 14.8 to work
back from f, to f,,_1, from f, 1 to f,_5, and on back to fi = f. Then
f(t%, p(t)) = 0 for a positive integer d and a power series p(t) without a
constant term, as desired.

In particular, we are done if the recursive process ends with (80) for
any positive integer j. Hence, we can assume that the recursive process
never ends and that fi(x, y) is defined for every positive integer j. The
first paragraph of the proof gives

Y1 2=2Vy =>¥3=>---.

Because a nonincreasing sequence of positive integers eventually be-
comes constant, there is a positive integer M such that

™ = TM+1 = VM2 = -

We have [; =1 for all j > M, by Theorem 14.8(ii). Applying the second
paragraph of the proof to fy; instead of f shows that there is a positive
integer ¢ and a power series g such that

fu(t®,q(t)) = 0.

Once again, we are done by the previous paragraph. O

We prove Theorem 14.1 by applying Theorem 14.9 repeatedly. In-
stead of requiring f(x, y) to be a nonzero polynomial as in Theorem
14.1, we let it be a nonzero power-polynomial. By pulling as many fac-
tors of x out of f(x, y) as possible, we write

flx, y) = ¥gx, y) (82)

for a power-polynomial g(x, y) in which some power of y is multiplied by
a power series in x that has nonzero constant term. Let y” be the least
such power of y; if r > 0, g is general of order 7.

We claim that there is a factorization

sthy) =(y—p(t) - (y— p(t)ult,y) (83)

for a positive integer d, power series p;(t),..., p,(t) without constant
terms, and a power-polynomial u(t, y) with a nonzero constant term. If
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so, substituting t¢ for x in (82) gives
f(t?, y) = tPg(t%, y)
=t9y—pi(0) -+ (y — pt)ult, y)

(by (83)), which is the desired factorization (26).

If r =0, then g(x, y) has a nonzero constant term, and (83) holds for
u(t, y) = g(t, y) and d = 1. Thus, it suffices to prove that there is a factori-
zation (83) when r > 0.

By Theorem 14.9, there is a power series g(s) without a constant term
such that

g(s% q(s)) =0

for an integer e and an indeterminate s. Long division with respect to y
gives

g(s y) = (y — q(s))h(s, y) (84)

for a nonzero power-polynomial h(s, y) (by the proof of Theorem 1.9).
Equation (84) and the fact that g(s) has no constant term imply that
y' ! is the least power of y in h(s, y) that is multiplied by a power series
in s with a nonzero constant term.

Suppose that there is a factorization (83) for h. Then there is a positive

integer k such that
(it y) = (y = pi(0) - (y — pra(B)ult, y) (85)

for an indeterminate ¢, power series pi(t),..., p,_1(t) without constant
terms, and a power-polynomial u(¢, y) with a nonzero constant term.
Substituting s = t* in (84) gives

g(t", y) = (y — q(t")n(t", y)

= (y— gty = pi(1) -+ (y = pra(®)ult, y)

(by (85)), which is (83) for d = ke and p,(t) = g(t*). In short, it suffices to
find the factorization (83) for h instead of g.

We apply the second-to-last paragraph to h instead of g and continue
in this way. Because r decreases by 1 when we replace g with h, the
process ends with r = 0 as in the third-to-last paragraph. Then working
backwards as in the previous paragraph gives the factorization (83).

We have now proved Theorem 14.1. The proofs of all the Intersection
Properties 1.1-1.6 in §1 will be complete once we prove in the next sec-
tion that Ip(f, g) is an integer when it is finite.

To end this section, we consider why the method before (57) gives all
the factors y — p;(t) in (26). As in the second paragraph after the proof of
Theorem 14.7, f(x, y) is a polynomial that has no constant term and does
not have x as a factor (whence k = 0 in (26)). Let h be the least order of
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any of the power series p;(t) in (26), and write
pi(t) =Dbit" + et 4 (86)

for each i. Let s be the number of the b; that equal 0; we have 0 < s < r. If
we multiply out the right side of (26), each term t/y’ has j > h(r —i). The
coefficient of t'y® for j = h(r — s) is the product of the r — s nonzero b;,
and so it is nonzero. Thus, if we apply the discussion before (47) to
f(t%, y) for d as in (26), the quantity v in that discussion is the integer h.
As before (47), we take any complex number a such that f(t¢, at") has no
t" term, which means that a can be any of the b; (by (26) and (86)). The
next step is to substitute

y=t"a+z) (87)

in f(t4, y) and discard a factor of t"” from the result. In fact, substituting
(87) in y — pi(t) for a = b; and discarding a factor of t" from the result
leaves

Z—cit—---

by (86). Thus, repeatedly using the procedure before (47) gives succes-
sive terms of (86).

Exercises

14.1. Consider the power series
plt) = —t 4262 — 3 4 2% — oo
gty =20+ 32+ 48 + 5t4 + .+
ut) =t+33+ 5437 +---.

Find the first four nonzero terms of the following power series.

(@) 2+ p®]1 +4q®)].  (b) [2+ p(t)][3+u(®)].
(c) p(t) +3p(t). (d) [1+q(t)]".
(e) q(b)®. () 24 p0)°.

14.2. Each part of this exercise gives a polynomial f(x, y) that is general of
order r for a positive integer r. By the discussion of (83), there is a posi-
tive integer d such that

ft y) = (y = pa(0) - (y = pr(D)ult, ) (88)

for power series pi(t),..., p,(t) without constant terms and a power-
polynomial u(t, y) with nonzero constant term. Find such an integer d
and the first four nonzero terms (or all there are) of each of the power se-
ries pi(t), ..., p,(t). Use the discussions after (6) and before (14) because f
has no x'y/ terms fori > 0and 0 < j < r.
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14.3.

14.4.

14.5.

14.6.

14.7.

(a) 3 +y+x°+y'.  (b) 2x—y+Py+y°t
(c) ¥ +2y+xy°. (d) & = y* +x°y* +y°.
(e) 4x+x% — y* +y*. (f) x* —y* +x°y>.

(g —x'+x°+y’+y°  (h) 4 +y -3’ +y’
(i (J

i) —a2+yt+xy°. -3 +yt +ayt + 5

=

J

In each part of Exercise 14.2, let u(t, y) be the power-polynomial in the
factorization (88), and write u(t, y) as Y ¢;(t)y’ for power series ¢;(t). Use
your answers to Exercise 14.2 to find the first three nonzero terms of each
nonzero ¢;(t).

Find the number of times that each curve in Exercise 14.2 intersects
xy + x% — y? at the origin. Use two methods and check that they agree, as
in the discussion after (35). First, use Definition 14.4 and your answers to
Exercise 14.2. Second, use Properties 1.1-1.6 and Theorems 1.8 and 1.11,
as in §1.

Each part of this exercise gives a polynomial f(x, y) where one term is y”
for a positive integer r and each other term is a constant times x'y’ for
i>0and 0 < j < r. The discussion of (83) implies that there is a positive
integer d such that

ft y) = (y = pa(0) - (y = pr(1))

for power series p;(t),...,p,(t) without constant terms. Use the discus-
sions before (47) and (57) to find the first four nonzero terms (or all there
are) of each of the power series p;(t).
) x5+ ay? 4 2%y + P,
b) —4x3 —x* + 8x%y — 5xy? + .
) dxt 4 2x° + dxBy — dxy? + Yt
) x° 4+ 2x3y + xy? + .
) —8x3 — x* +12x%y — 6xy? + y°.
) Xt +xy — 3y —ay? +yt
) =8 + x5y + 2%y + yt.
2

S o Q0

) X2 — X% — 4x’y — 2xy® +yt.

i) —x+2%y—x'y+y

(a
(
(
(
(
(
(
(
(i

=

For the following polynomials, follow the directions of Exercise 14.2 ex-
cept for the last sentence, which does not apply. Instead use the discus-
sions before (47) and (57).

) =X+ X%y + 22Xy +y* + YR
b) —4x5 + 2xy + 2y% + y>.
) X+ 2ty + 2%y + 4+ YR
) —4x® + xty +y? + 5%y 4+ 5.
) —x8 4+ 2x3y — ¥ty — y? + 2
Xt —2xy + X%y 4+ y? +yt
) Xt — X%y + 2xy? — y® + 3yt
) 4x2 4 dxy + y? + 2x3y3.

(a
(
(c
(d
(e
(f)
(g
(h

Follow the directions of Exercise 14.3 for the curves in Exercise 14.6 in-
stead of 14.2.
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14.8.

14.9.

14.10.

14.11.

14.12.

IV. Parametrizing Curves

Definition 14.4 and the discussion of (6)-(12) imply the following result
over both the real and the complex numbers: if f(x, y) is a curve of the
form (6), there is a power series p(x) without a constant term such that

Io(f,g) = oxg(x, p(x))

for every polynomial g(x, y).

In the real projective plane, let F = 0 be a curve nonsingular at a point
P. Let G=0 and H = 0 be distinct curves of the same degree such that
Ip(F,G) < Ip(F,H). Prove that Ip(F,G) equals Ip(F,7G+ H) for all real
numbers r except one, which makes Ip(F,rG + H) greater than Ip(F,G).
Use the result in the previous paragraph, Properties 3.1 and 3.5, Theo-
rems 3.4 and 4.7, and Definition 4.9. (Recall that H is not a constant mul-
tiple of G, by the paragraph after the proof of Theorem 3.6.)

In the real projective plane, let F = 0 be a nonsingular, irreducible curve
of degree m > 1. Let G=0 and H = 0 be distinct curves that have the
same degree n > 1 and intersect F in the same mn points, listed by multi-
plicity. Prove that m < n and there is a curve W = 0 of degree n — m such
that

Ip(G,H) = Ip(G, F) 4+ Ip(G, W) = Ip(H, F) + Ip(H, W)

for every point P in the real projective plane.

(Hint: Deduce from Exercise 14.8 that there is a real number s # 0
such that sG + H intersects F' more than mn times counting multiplicities.
Then apply Theorems 11.10 and 3.6. This exercise extends Theorems 6.1
and 6.4 from “peeling off” conics and lines to “peeling off” nonsingular,
irreducible curves of all degrees.)

Let F be the irreducible cubic y? = x*(x + 1) in (23) of Section 8 (Figure
8.6). Find two lines that intersect F only at the origin, where each inter-
sects F three times. (Thus, we cannot omit the assumption in Exercise
14.9 that F is nonsingular, since m = 3 is greater than n = 1 in this exer-
cise.)

In the real projective plane, let a curve F = 0 be nonsingular at a point P.
Let n be a positive integer, and let G be the general homogeneous polyno-
mial of degree n with indeterminate coefficients; for example, G is given
by the left sides of (2) of Section 2 for n = 1, (1) of Section 5 for n = 2, and
(1) of Section 8 for n = 3. Let d be a positive integer. Prove that there is a
system of d linear homogeneous equations in the coefficients of G that is
equivalent to the condition that F' and G intersect at least d times at P. Use
the first paragraph of Exercise 14.8, Properties 3.1 and 3.5, Theorems 3.4
and 4.7, and Definition 4.9.

In the real projective plane, let C be a nonsingular, irreducible cubic. Add
points of C with respect to a flex O as in Definition 9.3. Let P, -Ps be points
of C that may not be distinct. Prove that there is at most one curve of de-
gree 2 that intersects C at P, -Pg, listed by multiplicity. Prove that such a
curve exists if and only if P; +--- + Ps = O.

(Hint: Deduce from Exercise 14.11 and Theorem 13.2 that there is a
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14.13.

14.14.

14.15.

curve of degree 2 whose intersections with C, listed by multiplicity, in-
clude P;-Ps. Then see Exercises 12.16(b), 10.8(b), and 14.9.)

In the real projective plane, let C = 0 be a nonsingular, irreducible cubic,
and let D = 0 be a cubic that intersects C at points P; -Pg, listed by multi-
plicity. For any points X and Y of C, define line XY and its third intersec-
tion with C as before Theorem 9.2. Let R be the third intersection of line
PP, and C, and assume that R does not equal any of the points P;—Py. Let
Q; be a point of C other than P; and P,, and let Q; be the third intersec-
tion of line RQ; and C. Prove that there is a cubic that intersects C at Q 1,
Q 3, P3Py, listed by multiplicity.

(Hint: By replacing D with rC + D for a real number 7, if necessary, we
can assume that D is nonsingular at P; and P, and does not contain line
P, P,. Use Theorems 3.6(iii), 4.11, and 9.5 and the proof of Theorem 9.1
to prove that line P, P, intersects D at Py, P,, S, listed by multiplicity, for
a point S not equal to any of the points Q1, Q2, P3—Py. Why does S lie on a
line M = 0 that does not equal line P;P, and does not contain any of the
points Q;, Q, P3—-Py? Use Theorem 6.4 to “peel oftf” line P,P, from
CM = 0 and the curve of degree 4 comprised of D = 0 and line RQ;.)

In the real projective plane, let C = 0 be a nonsingular, irreducible cubic.
Add points of C with respect to a flex O as in Definition 9.3. Let C intersect
a cubic D = 0 at points P; -Pq, listed by multiplicity. Prove that

P1++P9:O

in the following cases.
(a) There is a line L that intersects C at three of the points P; -Pq, listed by
multiplicity.
(Hint: Taking G = C and H = D in Theorems 9.5 and 6.4 makes it
possible to apply Exercises 9.2(a) and 10.8(b) whether or not L is a fac-
tor of D.)
(b) P1-Pg are any points of C, with repetitions allowed.
(Hint: By taking Q; to be the third intersection of line P3P, and C,
we can use Exercises 14.13 and 9.2(a) to reduce to the case in (a). Part
(a) applies directly when the conditions of Exercise 14.13 on R and Q;
fail to hold.)

This exercise extends Theorems 13.4, 13.6, and 13.7 by allowing repeti-

tions among the points P, -Pg. In the real projective plane, let C =0 be a

nonsingular, irreducible cubic. Add points of C with respect to a flex O as

in Definition 9.3. Let P;-Pg be points of C with repetitions allowed. Set

P9:7P] 77P3

(a) Prove that there is a cubic D = 0 such that the cubics vC + D for all
real numbers r are exactly the cubics other than C whose intersec-
tions with C, listed by multiplicity, include P, -Pg. Prove that all these
cubics intersect C at P;—Pg, listed by multiplicity. (See Theorem 13.2,
Exercises 12.16(b), 14.11, and 14.14, and the hint to Exercise 14.9.)

(b) If Q is any point in the projective plane other than P;-Py, prove that
there is exactly one cubic that contains Q and whose intersections
with C, listed by multiplicity, include P;-Ps.
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14.16. Let f(x, y) = x% — 2xy + 2x%y + y? — 2xy> + x%y>.

(a) Show that f(x,x(1 +z)) = x2f(x, z).

(b) In the notation of the proof of Theorem 14.9, why is there no positive
integer u such that either f,(x,0) is identically zero or f,(x, y) has the
form discussed before (14)?

(c) Show that f is the square of a polynomial. Find a factorization of the
form (26) for f, determine all terms of the power series in this factori-
zation, and justify your answer.

(On the other hand, let f(x, y) be a polynomial that does not have
the square of any nonconstant polynomial as a factor. Then, in the no-
tation of the proof of Theorem 14.9, there is an integer u such that ei-
ther f,,(x,0) = 0 or f,(x, y) has the form (6). See pp. 105-106 of Robert
J. Walker's book Algebraic Curves, listed in the references, for a proof.)

§15. Parametrizations of General Form

To finish deriving the intersection properties, we determine the intersec-
tion multiplicity Ip(F, G) of curves F and G at any point P in the complex
projective plane. We worked only at the origin in the last section and fo-
cused on algebraic computations with power series. Now we work at any
point and use power series more geometrically. This interprets §14 intu-
itively, proves that intersection multiplicities are integer-valued or infi-
nite, and shows that they are preserved when we use transformations
or complex conjugation to change coordinates.

We work over the complex numbers throughout this section, as we did in
§14.

If p(t) and ¢(t) are power series with o,p(t) > 1, we get a power series
q(p(t)) by substituting p(t) for t in g(t). For example, substituting

plt) =t+3t* + 56+
for t in
q(t) =2+ 4t + 6t* + 8> + - -
and collecting terms of degree at most three shows that g(p(t)) equals
24 4(t+3t2 4583 4 ) 6t F B ) Bt )
=244t + 126 + 20 + 6t° + 36t° + 81° + - --
=2+ 4t +18t> +64t° + -

The definition of g(p(t)) makes sense because op(t) > 1: the t* term of
q(p(t)) depends only on the terms of p(t) and g(t) whose degrees are at
most k.

Theorem 14.1 illustrates two of the reasons that power series play a
vital role in the study of curves. First, we can perform straightforward
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algebraic computations with power series in much the same way as with
polynomials. Second, power series are versatile enough to reflect the
complicated behavior of curves. The next result provides more evidence
of the versatility of power series. Part (i) shows that power series of order
0 have multiplicative inverses. By part (ii), power series of order 1 give
reversible changes of parameter. Part (iii) shows that power series of
order 0 have eth roots for all positive integers e.

Theorem 15.1
Let p(t) be a power series.

(i) If p(t) has order 0, then there is a power series v(t) of order 0 such that

p(t)u(t) =

(ii) If p(t) has order 1, then there is a power series r(t) of order 1 such that

p(r(t)) =
)

(iii) If p(t has order 0 and e is a positive integer, then there is a power series
s(t) of order 0 such that s(t)¢ = p(t).

Proof

Let

l’) = Z aiti. (1)

(i) Given that p(t) has order 0, we must find a power series

= " bt/ of order 0 such that the product p(t)u(t) is the constant 1.

Since ag # 0 (because op(t) = 0), we can take by = a,' (by (26) of §10),

which gives p(t)v(t) the constant term agbg = 1. Since by # 0, v(t) has

order 0. For each positive integer I, once by, ..., b1 have been chosen,
set

b = —a(?l(albzfl + - @by + aibo).

This makes the t' term of p(t)v(t) equal zero (by (5) of §14). Then p(t)v(t)
is the constant 1, as desired.
(ii) Assume now that p(t) has order 1, which means that ag = 0 and
a; # 0. We claim that there is a power series
r(t) =it + cot> + -+ (2)

with ¢; # 0 such that p(r(t)) = t. Substituting (2) into (1) gives

: N 2 \3
() =a (3 et +a (Y et) +as(Y et) 4+
= aycit + (ar16y + ac?)t? + (arcs + 2azc105 + aze)t® + -+, (3)

We choose the ¢; recursively so that (3) simplifies to t. Since a; # 0, set-
ting ¢; = a; ! # 0 makes the coefficient ajc; of t in (3) equal 1. For any
integer k greater than 1, the coefficient of t* in (3) is a;cx plus terms in
the a; and ¢i,...,cx_1. Since a; # 0, once ¢y, ..., Cr_1 have been chosen,
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we can choose ¢ so that the tf term in (3) is zero. This gives a power
series r(t) in (2) of order 1 such that p(r(t)) = t, as desired.

(iii) Assuming now that p(t) has order 0, we must find a power series
s(t) = Y. dit/ with dy # 0 such that s(t)¢ = p(t). Expanding

(do+dit +dt* +---)°
gives
1
as+edy ' dit + (edéldz +oele— 1)d§2d]2) 24 (4)
We choose the d; recursively so that dy # 0 and (4) equals Y a;t'. Since

ap # 0, there is a complex number d, # 0 such that d§ = a, (as noted af-
ter (25) of §10). For any positive integer k, the coefficient of t¥ in (4) is

edg’ldk plus a sum of terms involving only d,...,dx_. Since dy # 0,
once d, ...,dr_1 have been chosen, we can choose dj so that the coeffi-
cient of t* in (4) equals ay, as desired. O

The next definition formalizes the idea of parametrizing curves. We
have introduced this idea informally by considering parametrizations at
the origin of the forms (1) and (2) in §14. Now we give a precise defini-
tion of parametrizations of general form at any point in the complex pro-
jective plane.

Definition 15.2

A parametrization of a homogeneous polynomial F(x, y, z) is a triple of
power series (k(t),[(t),m(t)) such that F(k,[,m) is identically zero and
the power series k, [, m do not all have constant term zero and are not
all constant multiples of one power series. O

Let a, b, and ¢ be the constant terms of k(t), I(t), and m(t) in Definition
15.2. Because a, b, and ¢ are not all zero, (a, b, ¢) is a point of the complex
projective plane. We say that F has parametrization (k, [, m) at the point
(a,b,c), which we call the center of the parametrization. For example,
Equations (16) and (19) of §14 show that

x=t2 y=23+t>4+25 ..., z=1 (5)
is a parametrization at the origin (0,0, 1) for the homogenization
42— yz+ )t +y° (6)
of (14) of §14.

The requirement in Definition 15.2 that k, [, m are not all constant

multiples of one power series excludes a triple of the form

(gh(t), h(1), sh(t))

for complex numbers ¢, v, and s and a power series h(t). We exclude such
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a triple because its coordinates are essentially constant: their common
factor h(t) is not significant in homogeneous coordinates.

The next result shows that we can rewrite a parametrization of a
curve by replacing the parameter t with a power series p(t) of order 1
and multiplying the coordinates by a power series u(t) of order 0.

Theorem 15.3
If (k(t), I(t), m(t)) is a parametrization of a complex curve F, then so is

(u(O)k(p(t), u(t)(p(1)), u(t)m(p(t))) (7)

for any power series u(t) of order 0 and p(t) of order 1. The two parametri-
zations have the same center.

Proof
If F(x, y, z) is homogeneous of degree n, replacing x, y, and z in F(x, y, z)
with the coordinates of (7) gives

u(t)"F(k(p(t), ( p(t), m(p(t))).

This is identically zero because the second factor results from substitut-
ing p(t) for t in F(k, 1, m), which is identically zero. Since u and at least
one of the power series k, [, m have nonzero constant terms, so does at
least one of the coordinates in (7): because p(t) has order 1, substituting
it for t in k, I, and m does not affect their constant terms. By Theorem
15.1(i) and (ii), there are power series v(t) and r(t) such that u(t)v(t) =1
and p(r(t)) = t. If the three coordinates of (7) were all constant multiples
of one power series h(t), multiplying by v(¢t) would show that k(p(t)),
I(p(t)), and m(p(t)) are all constant multiples of v(t)h(t), and substituting
r(t) for t would show that k(t), I(t), and m(t) are all constant multiples of
v(r(t))h(r(t)), which would contradict the assumption that (k,I,m) is a
parametrization of F. Thus, (7) is a parametrization of F, by Defini-
tion 15.2. If k, I, m, and u have constant terms a, b, ¢, and d, then (7)
has center (da, db, dc), which is the same point as the center (a, b, c) of

(k, I, m). O

We say that the parametrization (k(t),(t), m(t)) in Theorem 15.3 is
equivalent to the parametrization (7). We consider these parametrizations
to be essentially the same because we get (7) from (k, [, m) by substituting
p(t) for t (which just changes the parameter) and multiplying each coor-
dinate by u(t) (which is not significant in homogeneous coordinates).
The idea that the two parametrizations in Theorem 15.3 are essentially
the same suggests the following result.

Theorem 15.4
Let (k,I,m), (k*,I*, m*), and (k**, **, m**) be parametrizations of a complex
curve F.
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(i) If (k,I,m) is equivalent to (k*,I*, m*) and if (k*,I*, m*) is equivalent to
(k** 1, m**), then (k, [, m) is equivalent to (k**, [** m**).

(i) If (k,L,m) is equivalent to (k*,1*,m*), then (k*,I*, m*) is equivalent to
(k,I,m).

Proof
In both (i) and (ii), since (k,I,m) is equivalent to (k*,I*,m*), we let
(k*,I*, m*) be given by (7).

(i) Since (k*,1*,m*) is equivalent to (k**, [**,m**), the latter equals

(w(Hk*(g(6)), w(O*(4(t)), w(t)m*(4(t))) (8)

for power series w and g of orders 0 and 1. Substituting the coordinates of
(7) for k*, I*, and m* in (8) shows that

k() = w(t)ulq(t)) k(p(g(1))),
(1) = wt)ulqg(0)plq(t))), (9)
m™ (1) = w(t)u(q(t))m(p(q(1))).

The constant term of w(t)u(q(t)) is nonzero because it is the product of
the nonzero constant terms of w(t) and u(t) (since g(t) has order 1). Be-
cause p(t) and g(t) both have order 1, so does p(q(t)): the coefficient of ¢
in p(q(t)) is the product of the coefficients of ¢t in p(t) and ¢(t). Thus, the
equations in (9) show that (k, [, m) is equivalent to (k**, I**, m**).

(ii) We must show that the parametrization (7) is equivalent to (k, I, m).
By Theorem 15.1(i) and (ii), there are power series v(t) and r(t) of orders
0 and 1 such that u(t)v(t) = 1 and p(r(t)) = t. Multiplying each coordinate
of the parametrization (7) by v(t) shows that (7) is equivalent to

(k(p(1)), (p(1)), m(p(1))).

Substituting 7(t) for t in this parametrization shows that it is equivalent to
(k,1,m). Combining the last two sentences with part (i) shows that (7) is
equivalent to (k,1,m). O

We call two parametrizations equivalent when each of them is equiva-
lent to the other. By Theorem 15.4(ii), this happens when either para-
metrization is equivalent to the other. For example, the complex curve
(6) is parametrized both by (5) and by the equivalent parametrization

x = t2 y=-202—t>4+26 ..., z=1 (10)

we get substituting —t for t in (5). The parametrization (10) corresponds
to (20) and (21) of §14. Substituting —¢ for t in (10) gives back the para-
metrization (5), as in Theorem 15.4(ii).

If two parametrizations (k, I, m) and (k**,I**, m**) are each equivalent
to a third (k*, I*, m*), then they are equivalent to each other, by Theorem
15.4. Thus, all the parametrizations equivalent to one are equivalent to
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each other, and we say that they form an equivalence class. All paramet-
rizations in an equivalence class are essentially the same, and we choose
any one of them to represent the class. The class consists of all the para-
metrizations equivalent to the chosen one, and they all have the same
center (by the last sentence of Theorem 15.3).

We call a parametrization (k, [, m) of a complex curve F redundant if it
is equivalent to a parametrization of the form

(K*(r (), " (r(1)), m*(r(1))), (11)

where (k*(t),1*(t), m*(t)) is a parametrization of F and r(t) is a power se-
ries of order at least two. Any parametrization of F equivalent to (k, [, m)
is also equivalent to (11) (by Theorem 15.4), and so it is also redundant.
In other words, if one parametrization in an equivalence class is redun-
dant, they all are.

We call a parametrization reduced if it is not redundant, that is, if it is
not equivalent to a parametrization of the form (11) for o,r(t) > 2. We
use reduced parametrizations to minimize exponents in power series.
For example, we prefer to parametrize (6) by using (5) instead of the re-
dundant parametrization

x =15, y=20+ 4218 4. z=1

we get by substituting ¢ for ¢ in (5). The previous paragraph implies that
a parametrization equivalent to a reduced parametrization is itself re-
duced.

The next result shows that we get power series of the same order
when we take equivalent parametrizations of a complex curve F and
substitute them for the variables in a complex curve G. This reflects the
idea that equivalent parametrizations are essentially the same.

Theorem 15.5
Let F and G be complex curves, and let (k,1, m) and (k*,1*, m*) be equivalent
parametrizations of F. Then G(k,l, m) and G(k*,1*, m*) have the same order.

Proof

Let n be the degree of the homogeneous polynomial G(x, y, z). There are
power series u(t) and p(t) of orders 0 and 1 such that (k*,I*, m*) is given
by (7). Substituting from (7) shows that G(k*,*, m*) equals

u(t)"G(k(p(1)), [ p(t), m(p(1))).
This power series has the same order as
G(k(p(t)), I p(t)), m(p(t))) (12)

because u(t) has nonzero constant term. We get (12) by substituting p(t)
for t in

G(k(t), (t), m(t)). (13)
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Because p(t) has order 1, the power series (12) and (13) have the same
order: if (13) is at"+--- and p(t) =bt+--- for b #0, then (12) is
ab"t” 4+ ---, where ab” # 0 if a # 0. Thus, G(k*,[*, m*) has the same order
as G(k,I,m). O

The last theorem lets us determine Ip(F, G) by taking representatives
of equivalence classes of parametrizations of F. We start with the case
where F is irreducible.

Definition 15.6
Let F and G be homogeneous polynomials such that F is irreducible, and
let P be a point in the complex projective plane. Set

Ip(F,G) = _ 0:G(k,L,m) (14)

where the sum runs over one parametrization (k, [, m) from each equiva-
lence class of reduced parametrizations of F at P. When F has no re-
duced parametrizations at P, we set Ip(F,G) = 0. O

The sum in (14) makes sense because each o0,G(k,[,m) is a nonnega-
tive integer or oco. The value of Ip(F, G) given by (14) depends only F,
G, and P because the value of 0,G(k,1,m) depends only on the equiva-
lence class of (k,1,m), by Theorem 15.5.

Like Definition 14.4, Definition 15.6 uses power series to determine
intersection multiplicities. Definition 14.4, however, involves division
and considers only parametrizations of the particular forms

x=0, y=t, z=1 (15)

and
d

x =t y = pi(t), z=1 (16)
for a positive integer d and power series p;(t) without constant terms.
Definition 15.6 does not involve division or specify the forms of paramet-
rizations because it takes one representative from each equivalence class
of reduced parametrizations at P. Without division, (14) ensures that
Ip(F, G) is a nonnegative integer or oo.

We extend Definition 15.6 to any nonconstant homogeneous polyno-
mial F by writing F' as a product of irreducible factors. The next result
shows that such a factorization of F exists and is essentially unique. We
postpone the proof to the end of the section in order to remain focused
on parametrizations and intersection multiplicities.

Theorem 15.7

Any nonconstant homogeneous polynomial factors as a product of irreducible
polynomials. This product is unique up to reordering the factors and multi-
plying them by nonzero constants. O
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Theorem 15.7 justifies the following definition.

Definition 15.8
Let F and G be homogeneous polynomials, and let P be a point in the
complex projective plane. If F is not constant, set

IP<F7 G) = IP<F1’G> + - +IP<Fm: G)

when F factors as a product Fy---F,, of irreducible polynomials. Set
Ip(c, G) = 0 for any nonzero constant c. O

Definition 15.8 ensures that repeated factors of F' contribute repeat-
edly to Ip(F, G), as discussed after Property 1.6.

Unlike Definition 14.4, Definition 15.6 does not require parametriza-
tions to have particular forms. This yields Property 3.5, which states
that transformations preserve intersection multiplicities.

Theorem 15.9

Let (x,y,z) — (¥, y’, 2') be a transformation that takes a point P to a point
P’ and homogeneous polynomials F(x, y, z) and G(x, y, z) to F'(x', y', z') and
G'(x',y',z"). Then we have

IP(F: G) = IP’(Fla Gl)

Proof

Because transformations preserve factorizations of homogeneous poly-

nomials (as noted before Theorem 4.5), we can assume that F is irreduc-

ible (by Definition 15.8). Let the transformation be given by (5) of §3.
Any parametrization (k, [, m) of F gives rise to power series

k' = ak + bl + cm,
' = dk + el + fin, (17)
m' =gk +hl+im
by substituting (k, I, m) for (x, y, z) in (5) of §3. The equation
F'(K',U',m") = F(k,1,m) (18)

holds for the same reason as Equation (16) of §3. Because the right side
of Equation (18) is identically zero, so is the left. Because transforma-
tions are reversible, the conditions that k, [, and m do not all have con-
stant term zero and are not all constant multiples of one power series
imply the same conditions for k’, I’, and m’. The last two sentences and
the fact that transformations are reversible imply that the equations in
(17) match up the parametrizations (k,[,m) of F with the parametriza-
tions (k/,1',m’) of F’. Considering the constant terms of the power series
n (17) shows that the center of (k,1,m) transforms to the center of
(K", 1, m).



284 IV. Parametrizing Curves

A parametrization of F equivalent to (k,I,m) has the form (7) for
power series u(t) and p(t) of orders 0 and 1. Substituting p(t) for ¢ in
(17) and multiplying these equations by u(t) shows that the parametriza-
tion in (7) transforms to

(w(t)K'(p(t), u(t)l'(p(t)), u(tym'(p(1))).

Since this parametrization is equivalent to (k’,1’,m’) and since transfor-
mations are reversible, it follows that transformations preserve equiva-
lence classes of parametrizations.

If the equations in (17) take a parametrization (k*,1*,m*) of F to
(k*,1*, m*), they take the parametrization of F in (11) to

(K7 (r(0)), 17 (r(£)), m™ (r(£))).

It follows that transformations preserve redundant and reduced para-
metrizations since transformations are reversible and preserve equiva-
lence classes of parametrizations (by the previous paragraph).

The equation G'(k’,U',m’) = G(k,I,m) holds for the same reason as
(16) of §3. Together with the preceding paragraph and Definition 15.6,
this proves the theorem. O

Conjugates of homogeneous polynomials and points in the complex
projective plane are defined before Theorem 11.7 and Property 12.6.
We say that the power series p(t) = Y a;t' has conjugate p(t) = > ait’.

Because conjugation of complex numbers interchanges them in pairs
and preserves sums and products (by (30)-(32) of §10), it follows that
parametrizations (k,[,m) of a complex curve F at a point P correspond

to parametrizations (k, [, m) of F' at P and that
G(k,I,m) = G(k,I,m)

for any homogeneous polynomial G. Equivalence classes of parametri-
zations of F correspond to equivalence classes of parametrizations of I,
since taking the parametrization of F in (7) equivalent to (k,I,m) and
conjugating its coordinates gives a parametrization

(@(e)k(p(e)), () (1), alt)m(p(1))

equivalent to (k,I,7m). It follows that redundant parametrizations of F
and F correspond, and so do reduced parametrizations, since conjugat-
ing the coordinates of (11) gives

(k*(7(8)), T (7(1)), m*(7(t))).-

Together with Definitions 15.6 and 15.8, the last paragraph implies
that

I3(F, G) = Ip(F, G),

since conjugation of homogeneous polynomials preserves factorizations
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(by Theorem 11.7(i) and the reversibility of transformations). Thus, con-
jugation preserves intersection multiplicities, and Property 12.6 holds.

To establish Property 3.1, we must show that Definition 15.8 agrees at
the origin with Definition 14.4. We start by proving that every paramet-
rization of a complex curve F at the origin is equivalent to one of the
form (16) when x is not a factor of F. We say that a parametrization of
the form (16) is in standard form. Assuming that x is not a factor of F, as
we do through Theorem 15.13, excludes parametrizations at the origin
that are equivalent to (15). We treat those parametrizations separately
in the proof of Theorem 15.15.

Theorem 15.10

Let F be a complex curve that does not have x as a factor. Then any paramet-
rization of F at the origin is equivalent to one of the form (t¢, q(t), 1) for a pos-
itive integer e and a power series q(t) without a constant term.

Proof

Let (k, [, m) be a parametrization of F centered at the origin. Because the
constant terms of k, [, and m give homogeneous coordinates for the point
(0,0,1), the constant term of m is nonzero. By Theorem 15.1(i), there is a
power series v(t) of order 0 such that v(t)m(t) = 1. By Theorem 15.4, we
can replace (k, [, m) with the equivalent parametrization

(vk,vl,vm) = (vk,vl, 1).

Changing notation, we assume that the given parametrization has the
form (k, [, 1).

If k(t) were identically zero, then (0,1, 1) would parametrize F. Since x
is not a factor of F, F(0, y, 1) is a nonzero polynomial in y. By the Funda-
mental Theorem of Algebra 10.1, we can factor

F(0,y,1) =r(y —w1) - (y — wy) (19)

for complex numbers r #0 and wj,...,w,. Because [({) is not
constant (by the last clause in Definition 15.2), the power series
I(t) — wn,...,I(t) — w, are all nonzero, and so is their product (as noted
before (13) of §14). Then F(0,1,1) is nonzero, by (19), and so (0, 1) is
not a parametrization of F.

Thus, k(t) is not identically zero. Since k(t) has constant term zero (be-
cause (k,1, 1) has center (0,0,1)), the order of k(t) is a positive integer e.
By factoring t¢ out of every term of k(t), we can write

k(t) = th(t) (20)

for a power series h(t) of order 0. There is a power series s(t) of order 0
such that s(t)¢ = h(t), by Theorem 15.1(iii). Then ts(t) is a power series of
order 1 such that

(ts(6)) = K(t), (21)
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by (20). Applying Theorem 15.1(ii) with ts(t) in place of p(t) gives a
power series r(t) of order 1 such that

r(t)s(r(t)) = t.
Together with (21), this shows that

k(r(t)) = (r(t)s(r(1)))® = t°,

and so substituting r(t) for ¢ in (k(t),(t), 1) gives

(%, 1(r(1)), 1).

Setting g(t) = I(r(t)) gives a parametrization (t¢ g(t), 1) of F equivalent to
(k,1,m). Since (k, I, m) is centered at the origin (0,0, 1), so is (t¢, g(t), 1) (by
Theorem 15.3), and ¢(t) has no constant term. O

If a power series has more than one nonzero term, then so does its eth
power for any positive integer e. In fact, when a and b are nonzero com-
plex numbers, so are the coefficients of the first two terms on the right-
hand side of the equation

(ati+btj+..')e:aetei+eaeflbt(efl)i+j+”'.

This observation lets us determine when a parametrization of the stan-
dard form (t¢, ¢(t),1) is redundant.

Theorem 15.11

Let F be a complex curve that does not have x as a factor. Let F have a para-
metrization (t° q(t), 1) for a positive integer e and a power series q(t) without
a constant term. This parametrization is redundant if and only if e and the
degrees of all nonzero terms of q(t) have a common factor greater than 1.

Proof
Assume that there is an integer g > 1 such that e = gn for a positive inte-
ger n and q(t) = > a;t¥ for complex numbers a;. Because F(t% g(t),1)

is identically zero, so is F(t", Y ait', 1), since we get the former from
the latter by substituting t¢ for t. Since the power series t", Y a;t!, and
1 do not all have constant term zero and are not all constant multiples
of the same power series, (t", Y a;t!, 1) is a parametrization of F. Then
(t%q(t),1) is redundant, since it arises by replacing t with t£ in
(t", Yo ait', 1) for g > 1.

Conversely, assume that (t% ¢g(t), 1) is redundant, which means that it
is equivalent to a parametrization of F' of the form

(k(r(t)), 1(r(t)), m(r(t))), (22)

where (k, 1, m) is a parametrization of F and r is a power series of order at
least two. There are power series u(t) and p(t) of orders 0 and 1 such that

(t%q(t), 1) = (u(t)k(s(t)), u(t)I(s(t)), u(t)m(s(t))) (23)
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for s(t) = r(p(t)). Because o,r(t) > 2 and o,;p(t) = 1, it follows that
0es(t) = of[r(p(1))] = 2. (24)

Because the parametrization (t¢ g(t), 1) has the origin as its center, so
does the equivalent parametrization (22) (by Theorem 15.3), and thus so
does (k,I,m) (since o,7(t) = 2). By Theorem 15.10, (k,I,m) is equivalent
to a parametrization of the form (t", h(t),1) for a positive integer n and
a power series h(t) without a constant term. Thus, there are power series
v(t) and w(t) of orders 0 and 1 such that

(k(), 1(t), m(t)) = (v(O[w(0)]", v(t)A(w(1)), v(t)). (25)

Substituting the expressions for k, I, and m from (25) into (23) gives the
equations

t* = u(t)u(s(t) [ws()]",
q(t) = u(t)v(s(t))h(w(s(t))),
1 =u(t)v(s(t)).
The last equation lets us simplify the first two equations to
to=[w(s(t)]"  and  q(t) = h(w(s(1))). (26)
By the remarks before the theorem, the first equation in (26) implies that
w(s(t)) = bts (27)
for a nonzero complex number b and a positive integer g. We have
g =ow(s(t)) = os(t) = 2, (28)

by (24), (27), and the fact that w(t) has order 1. Equation (27) lets us sim-
plify the equations in (26) to

to =Db"te" and q(t) = h(bt®),

which shows that g is a common factor of e and the degrees of all the
terms of ¢(t). Since g > 2 (by (28)), we are done. O

Consider a curve of the form y = p(x) for a polynomial p(x) without a
constant term. Any parametrization of the curve at the origin is equiva-
lent to one of the form

(t¢, p(t),1) (29)

for a positive integer e, by Theorem 15.10 and the fact that the coordi-
nates of the parametrization must satisfy the relation y = p(x). By Theo-
rem 15.11, the parametrization (29) is reduced if and only if ¢ = 1. Thus,
there is exactly one equivalence class of reduced parametrizations of
y = p(x) at the origin, and this class contains (¢, p(t),1). Hence, Defini-
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tion 15.6 gives the same value as Theorem 1.11 for the number of times
that y = p(x) intersects another curve at the origin.

It takes considerably more work to prove that Definitions 15.6 and 15.8
give the same value as Definition 14.4 for the intersection multiplicity of
any two nonzero curves at the origin. The next theorem determines
when two reduced parametrizations of the standard form (t¢ g(t),1) are
equivalent.

For any positive integer e, we call the complex number

{ = cos(2r/e) +isin(2r/e) (30)

a primitive eth root of unity. Equation (25) of §10 implies that the complex
numbers

. =1 (31)

are spaced at angles of 27/e about the unit circle and are all roots of
the polynomial y® — 1. When e = 6, for example, the complex numbers
in (31) are spaced at 60° angles around the unit circle (Figure 15.1). For
any positive integer e, Theorem 1.10(ii) and (24) of §10 imply that we
can factor

Y-1=(y-Ny-Oy----(y-)

and that (31) lists all roots of y¢ — 1 in the complex numbers

Theorem 15.12

Let F be a complex curve that does not have x as a factor. Let F have a re-
duced parametrization (t°, q(t),1) at the origin for a positive integer ¢ and a
power series q(t) without a constant term. Let { be the primitive eth root of
unity in (30).

(i) Then
(% q(t), 1), (¢°,q(L0), 1), ..., (£, q(C7H), 1) (32)

are equivalent parametrizations of F.
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(ii) No two of the parametrizations in (32) are equal.

(i) Let (t¢, q(t),1) be equivalent to a parametrization (t*,s(t), 1) of F at the
origin for a positive integer k and a power series s(t) without a constant
term. Then (t*,s(t), 1) is one of the parametrizations in (32).

Proof
(i) Taking u(t) =1 and p(t) = ¢ "t in Theorem 15.3 for any positive inte-
ger h shows that (32) consists of equivalent parametrizations of F, since
(£")¢ = t¢ because (° = 1.

(ii) We claim first that

q(t) # q({"t) (33)

for any positive integer h less than e. In fact, there is a prime number v
that divides e to a higher power than it does h. There is a nonzero term of
q(t) whose degree m is not divisible by v, by Theorem 15.11. It follows
that him is not a multiple of e, and so ("™ # 1. Since the coefficients of
t™ in g(t) and g(¢"t) differ by a factor of {"", Inequality (33) follows.

Now let i and j be integers with 0 <i < j < e — 1. The previous para-
graph implies that

q(l't) # q('), (34)

since substituting (¢)~'t for t in each side of (34) gives (33) for h = j — i.
Inequality (34) shows that no two of the parametrizations in (32) are
equal.

(iii) Because (t*,s(t), 1) is equivalent to (t9 g(t), 1), there are power se-
ries u(t) and p(t) of orders 0 and 1 such that

k

(t5,8(1), 1) = (u(t)[p(1)], u(t)g( p(t), ult)).

Equating the third coordinates gives u(t) = 1, and so the first coordinates
give

t* = [p(0)]* (35)

and the second coordinates give s(t) = g(p(t)). Equation (35), the re-
marks before Theorem 15.11, and the fact that o,p(t) =1 imply that
k = e and p(t) = bt for a complex number b such that b® = 1. The discus-
sion after (31) shows that b = (" for an integer h from 0 through ¢ — 1.
The last three sentences imply that

(t5,s(1),1) = (%, q({"t), 1). O

The next theorem shows how the reduced parametrizations of a curve
f at the origin are related to a factorization of the form in Theorem 14.1.
Assuming that f does not have x as a factor eliminates factors of t in (26)
of §14.
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Theorem 15.13
Let F(x, y,z) be a homogeneous polynomial that does not have x as a factor,
and set f(x,y) = F(x, y,1). Let d be a positive integer such that

f(th y) = (y = pi(8) -+~ (y = p)ult, y) (36)

for a nonnegative integer v, power series pi(t),..., p,(t) without constant
terms, and a power-polynomial u(t, y) with a nonzero constant term.

(i) For any integer j from 1 through v, let s be the greatest common factor of
d and the degrees of the nonzero terms of pj(t). Set e = d/s and write

pi(t) = q(t*) (37)

for a power series q(t) without a constant term. Then (t¢, q(t),1) is a re-
duced parametrization of F at the origin.

(ii) Conwversely, let (t% q(t), 1) be a reduced parametrization of F at the origin
for a positive integer e and a power series q(t) without a constant term.
Set s =d/e. Then s is an integer, Equation (37) holds for an integer j
from 1 through r, and s is the greatest common factor of d and the de-
grees of the nonzero terms of pj(t).

Proof

(i) Because s is a factor of d and the degrees of the nonzero terms of p;(t),
e = d/s is an integer, and there is a power series ¢(t) without a constant
term such that (37) holds. Substituting p;(t) for y in (36) shows that

F(t, pj(n),1) = 0. (38)
It follows that
F(t%q(t),1) =0,

since substituting t° for t in this equation gives Equation (38). Because ¢
is a positive integer, t° and 1 are not constant multiples of the same
power series. The choice of s ensures that no integer greater than 1 is a
common factor of ¢ and the degrees of the nonzero terms of g(t). Thus,
(t% q(t),1) is a reduced parametrization of F at the origin, by Definition
15.2 and Theorem 15.11.

(ii) Because (t9 q(t), 1) is a parametrization of F, we have

f(t%q(t)) = 0.
Substituting t¢ for t shows that

£(t%,q(t%) = 0.

Then substituting t¢ for t and g(t¢) for y in (36) gives
(q(th) = pr(t%)) - (q(t?) — pelt))u(t, q(t?)) = 0. (39)

Because u(t,y) has nonzero constant term, so does u(t% g(t%)). Thus,
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Equation (39) implies that

q(t?) = pj(t°) (40)

for some integer j from 1 through r, by the discussion before (13) of §14.

Let v be a prime number that is a factor of e. A nonzero term of ¢(t)
has degree m not divisible by v (by Theorem 15.11). Since g(t%) has a
nonzero term of degree dm, Equation (40) implies that e is a factor of
dm. It follows that the highest power of v that is a factor of e is also a fac-
tor of d (since v is a prime that is not a factor of m). Because this holds for
every prime factor v of e, ¢ is a factor of d, and so s = d/e is an integer.
Equation (37) follows from Equation (40), since substituting t¢ for ¢ in
(37) gives (40). Because 1 is the greatest common factor of ¢ and the de-
grees of the nonzero terms of g(t) (by Theorem 15.11), (37) implies that s
is the greatest common factor of d and the degrees of the nonzero terms

of pj(t). O

We can now use a factorization of the form in Theorem 14.1 to deter-
mine the equivalence classes of reduced parametrizations of a curve at
the origin. For example, consider f(x,y) in (57) of §14. We know that
f(t2, y) factors as in (66) of §14. Because the power series p;(t) in (60)
of §14 has terms of odd degree,

(%, pa(6), 1) (41)

is a reduced parametrization of f at the origin (by Theorem 15.13(i) with
s = 1). Taking ¢ = 2 in (30) gives

{=cosnt+isintn=—-14+1i-0=—1, (42)

and so the parametrization (41) is equivalent to (t2, p,(t), 1) for p,(t) in
(62) of §14 (by Theorem 15.12(i) with e = 2).

If Theorem 15.13(i) applied with s = 1 to p3(t) in (65) of §14, then (42)
in the last paragraph and Theorems 15.12 and 15.13 would imply that
(66) of §14 had a factor y — p3(—t) distinct from y — ps3(t). Since it does
not, Theorem 15.13(i) applies to p3(t) with s = 2. Then all terms in (65)
of §14 have even degree, and f has a reduced parametrization

(t,q(t),1) (43)
at the origin for the power series

1,, 13 14 3 6
)= ——t*+—t3——t Ot
4t 4 +16 64 +1024 +
such that g(t?) = ps(t). The parametrizations (41) and (43) are not equiv-
alent (by Theorem 15.12(iii)), and every reduced parametrization of f at
the origin is equivalent to one of them (by (66) of §14 and Theorems
15.10 and 15.13(ii)).
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In the real projective plane, let P be a point, and let F be an irreduc-
ible curve such that every reduced parametrization of F at P over the
complex numbers is equivalent to one given by a triple of power series
with real coefficients. It can be shown in this case that the arcs of F
through P correspond to the equivalence classes of reduced parametriza-
tions of F' at P. Then the summands in (14) correspond to the arcs of F
through P, as seems natural.

To illustrate the correspondence between arcs and equivalence
classes of reduced parametrizations, we return to (57) of §14. The graph
in the Euclidean plane has two arcs passing through the origin, one
horizontally and one vertically (Figure 15.2). They correspond to the
two equivalence classes of reduced parametrizations at the origin in the
second-to-last paragraph.

Similarly, by (56) of §14 and Theorems 15.10-15.13, (47) of §14 has
two equivalence classes of reduced parametrizations at the origin, repre-
sented by (x, pi(x),1) for p;(x) and p,(x) in (52) and (55) of §14. Corre-
sponding to these classes, the graph in the Euclidean plane has two arcs
through the origin, one lying above the other (Figure 15.3). Likewise, (9)
of §14 has one arc through the origin in the Euclidean plane (Figure
15.4), and it has one equivalence class of reduced parametrizations at
the origin (by (12) of §14 and Theorems 15.10-15.13). The curve (14) of
§14 has one equivalence class of reduced parametrizations at the origin
(by (21) and (25) of §14, Theorems 15.10-15.13, and (42) of this section),
and the graph passes through the origin once, coming and going from
the right (Figure 15.5).

On the other hand, if an equivalence class of reduced parametriza-
tions is not represented by a triple of power series with real coefficients,
the class does not represent an arc in the Euclidean plane. For example,
(24) of §8 has reduced parametrizations

t, + it—it2+-~- 1
) — 2 b

at the origin but no arcs there in the Euclidean plane (Figure 8.7).
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Figure 15.4 Figure 15.5

We need to know that the right side of (36) has no repeated factors
Yy — pj(t) when f(x,y) is an irreducible polynomial. This is shown by
the next result, whose proof we postpone to the end of this section. The
statement that “f(x, y) is an irreducible polynomial” means that f is not
constant and is not the product of two nonconstant polynomials. Of
course, an irreducible polynomial can still factor as a product of two
nonconstant power-polynomials. For instance, y? — x* + x? is irreducible
as a polynomial over the complex numbers (by the discussion of (9) of
§8) although it factors as a product of power-polynomials

—ix—l—ixz—i- —|—ix—ix2+
Y 2 Y 2

(by Theorem 15.13 and the last sentence of the previous paragraph).

Theorem 15.14
Let f(x, y) be an irreducible polynomial. Assume that

fith y) = (y — p(t)(y — v()w(t, y)

for a positive integer d, power series p(t) and v(t), and a power-polynomial
w(t, y). Then p(t) and v(t) are not equal. O

We can now prove Property 3.1 by showing that Definitions 15.6 and
15.8 agree at the origin with Definition 14.4.

Theorem 15.15
Let F(x,y,z) and G(x, y,z) be homogeneous polynomials, and set f(x,y) =
F(x,y,1) and g(x, y) = G(x, y,1). Then we have

IO(F(Xa Y, Z)3G<X7 y>Z)) = IO(f<X> y):g(x> y)); <44)

where O is the origin.
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Proof
If F is a nonzero constant, both sides of (44) are zero, by Definition 15.8
and Theorem 14.5. Thus, we can assume that F has positive degree, and
so it factors as F; - - - Fy, for a positive integer m and irreducible homoge-
neous polynomials Fi(x, y,z) (by Theorem 15.7). Set fi(x, y) = Fi(x, y, 1).
If we prove that Io(F;, G) = Io(f;,g) for each i, Equation (44) follows,
since the left side of (44) is > Io(F;, G) (by Definition 15.8), and the right
side of (44) is > Io( fi,g) (by (39) and (46) of §14). Thus, we can replace F
with F; and assume that F is irreducible.

Consider the main case where F is not the polynomial x. Then x is not
a factor of F, since F is irreducible. By Theorem 14.1, there is a factoriza-
tion of the form (36) in Theorem 15.13.

Consider an equivalence class of reduced parametrizations of F at the
origin. It includes a parametrization of the standard form

(t%q(t),1) (45)

for a positive integer e and a power series g(t) without a constant term
(by Theorem 15.10). By Theorem 15.12, the equivalent parametrizations
of standard form are

(£, q(¢"), 1)

as h runs over the integers from 0 through ¢ — 1, where ( is the primitive
eth root of unity in (30), and no two of the power series g(("t) are equal.
By Theorem 15.13, s = d/e is an integer and the product of the factors
y — p;(t) in (36) includes

(y—aq(t)(y —q(lt*) - (y — q(C°7'e%). (46)
By Definition 14.4, the factors in (46) contribute
37 ot q(ee) (47

to Io(f,g), where the sum ranges over the integers h from 0 through
e—1. We get the power series g(t?, q(("t%)) by substituting ("t* for ¢ in
g(t% q(t)) (since d = es and {° = 1). Because this substitution multiplies
the orders of power series by s, each term of the sum in (47) has the
same value

s0:g(t*, q(t)).
Since e terms of this value are summed in (47) as h varies from 0 through
e — 1, (47) equals
Soug(t, (1),
This simplifies to
0:G(t* q(t), 1), (48)
since d = es and g(x, y) = G(x, y, 1).
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Let (45) vary over one representative from each equivalence class of
reduced parametrizations of F' centered at the origin. The sum of the cor-
responding quantities (48) equals Io(F, G), by Definition 15.6. The prod-
uct of the corresponding quantities (46) is the product

(y—m(t) - (y— p(t)

n (36), by Theorems 15.13 and 15.14. The sum of the corresponding
quantities (47) is Io(f,g), by Definition 14.4 with k = 0. Because (47)
equals (48), Equation (44) follows from the last four sentences.

All that remains is the case where F(x, y, z) is the polynomial x. We
must prove that

IO(Xa G<X> Y, Z)) = IO<X5 g<X> y)) <49)

Taking p(x) to be the zero polynomial in the paragraph containing (29)
shows that the x-axis y = 0 has exactly one equivalence class of reduced
parametrizations at the origin, with representative (¢, 0, 1). Interchanging
x and y shows that the y-axis x = 0 has exactly one equivalence class of
reduced parametrizations at the origin, with representative (0,t,1).
Thus, the left side of (49) is 0,G(0,t,1) (by Definition 15.6). On the other
hand, when f(x, y) is the polynomial x, (26) of §14 holds for d =1 =k,
r =0, and u(t, y) = 1. Using these values in Definition 14.4 shows that
the right side of (49) is 0,g(0, y). This equals the value 0,G(0,t,1) we
found for the left side, and so Equation (49) holds. O

Except for the proofs of Theorems 15.7 and 15.14, we have derived
the three Intersection Properties 3.1, 3.5, and 12.6 after §1. Definitions
15.6 and 15.8 show that Ip(F, G) is a nonnegative integer or oo for any
point P and any homogeneous polynomials F and G. Thus, by Theorem
15.15, Ip(f,g) is a nonnegative integer or oo for any nonzero polyno-
mials f(x,y) and g(x, y). Theorem 14.7 and the last sentence of Defini-
tion 14.4 show that Ip( f,g) is 0 or o0 when f or g is the zero polynomial.
Thus, Io(f, g) is a nonnegative integer or oo for any polynomials f(x, y) and
g(x, y). This proves Property 1.1 and, together with Theorem 14.5, also
proves Property 1.3. Together with the results of §14, this establishes
the six Intersection Properties 1.1-1.6 of §1.

Only Theorems 15.7 and 15.14 remain to be proved. Both theorems
follow from the next result, which we prove by repeatedly adding multi-
ples of two polynomials in x and y so that the highest powers of y cancel.
We used the same approach to compute intersection multiplicities in Ex-
ample 1.13 and to prove Bezout's Theorem 11.5 via Theorem 11.4.

Theorem 15.16
Let f(x,y) and g(x, y) be polynomials that have no common factors of posi-
tive degree. Then we can write

fx, yk(x, y) + g(x, Y)llx, y) = r(x) (50)
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for polynomials k(x, y) and I(x, y) and a nonzero polynomial v(x) not involv-
ngy.

Proof
If f is zero, then g is a nonzero constant (since f and g have no common
factors of positive degree), and Equation (50) holds for k=1=1 and
r = g. Thus, we can assume that f is nonzero, and so its degree in y is
an integer s > 0. Likewise we can assume that g is nonzero and has de-
gree t in y for an integer t > 0.

We can assume that s > t (by interchanging f and g, if necessary). We
factor out of g(x, y) a polynomial u(x) not involving y that has the largest
possible degree. Then we have

gx y) = g"(x, y)ulx),

where y appears in every nonconstant factor of g*(x, y). Because g has
no factors of positive degree in common with f, neither does g*. If we
prove that there are polynomials k*(x, y) and [*(x, y) and a nonzero poly-
nomial »*(x) not involving y such that

flx, k™ (%, y) + 8" (x, YU (x, y) = (%),

multiplying this equation by u(x) gives Equation (50) for k = k*u, [ = I*,
and r = r*u. Thus, we can replace g with g* and assume that y appears
in every nonconstant factor of g.

Let a(x) be the coefficient of y% in f(x, y), and let h(x) be the coeffi-
cient of y' in g(x, y). Because neither h(x) nor f(x, y) has a factor of pos-
itive degree in common with g(x, y), neither does f(x, y)h(x) (by Theo-
rem 11.3, whose proof does not use intersection properties, applied to
the homogenizations of h(x), f(x, y), and g(x, y)). It follows that

Alx y) = f(x Yhlx) —glx, yalx) y™ (51)

has no factor of positive degree in common with g(x, y). If we can find
polynomials k;(x, y) and l;(x, y) and a nonzero polynomial r(x) not in-
volving y such that

Hx Yk (x, y) + 8(x, yh(x, y) = (%),
substituting for f; from (51) shows that
(fh—gay* ki +gh =r.
Rewriting this equation as
fhky +g(lh —ay®'ky) =7

gives (50). Thus, we can replace f with fi, where f; either is zero or
has smaller degree in y than f does (since y*® has the same coefficient
a(x)h(x) in both terms on the right of (51)).

We repeatedly apply the last two paragraphs, dropping factors that do
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not involve y from f or g and reducing the degree of f or g in y. We con-
tinue until f or g becomes zero, and we are done by the first paragraph
of the proof. O

We want to prove that homogeneous polynomials factor uniquely. We
cannot use Bezout's Theorem because it depends on the intersection
properties we are still justifying. We use instead the following weak
form of Bezout's Theorem that does not require intersection properties
for its proof.

Theorem 15.17

Let F(x, y,z) and G(x, y, z) be homogeneous polynomials that have no com-
mon factors of positive degree. Then F and G intersect at finitely many differ-
ent points in the complex projective plane.

Proof

Set f(x, y) = F(x,y,1) and g(x, y) = G(x, y, 1). Since f and g have no com-
mon polynomial factors except constants, there is a nonzero polynomial
r(x) as in Theorem 15.16. Factor

r(x) = k(x —wi) -+ (x — wy)

for complex numbers k # 0 and w;, by the Fundamental Theorem 10.1.

If f and g intersect at a point (d, €) in the complex affine plane, setting
x=d and y = e in (50) gives r(d) = 0. Then d is one of the w; above, by
(24) of §10. Likewise, there are finitely many possibilities for e, and so
for (d,e).

Any point (a, b, c¢) in the complex projective plane with ¢ # 0 corre-
sponds to a point in the complex affine plane. The last paragraph shows
that F and G intersect at finitely many such points. Interchanging coor-
dinates shows that F and G also intersect at finitely many different points
(a,b,c) with a # 0 and finitely many with b # 0. Thus, the total number
of intersections of F and G is finite. O

We can now prove Theorem 15.7. Let F' be a nonconstant homoge-
neous polynomial. Unless F is irreducible, it factors as the product of
two polynomials of smaller degrees. Likewise, each of these polynomials
is either irreducible or the product of two polynomials of smaller de-
grees. Because the degrees of polynomials cannot decrease indefinitely,
this process ends with F' factored as a product of irreducible polyno-
mials.

To see that this factorization is unique, assume that

Fi-Fp=G -Gy (52)

for irreducible polynomials F; and G; and nonnegative integers m and n.
If m>1, F; and G; - - - G, intersect at all points of F;, of which there are
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infinitely many in the complex projective plane (by Theorem 11.6). We
get these points by combining the points where F; intersects each of the
Gj (by (24) of §10). It follows that n > 1 and F; intersects at least one of
the Gj, say G, at infinitely many different points. Since F; and G; are ir-
reducible, we have G; = kF; for a complex number k # 0 (by Theorem
15.17). Substituting kF; for G; in (52) and canceling F; (by Theorem
11.2(ii)) gives

Fy- - Fp =kGy---Gy.

As long as any F; or G; remain, we continue as above to cancel equal
factors. When the process ends, all the F; and Gj are paired, and m equals
n. This proves Theorem 15.7.

To derive Theorem 15.14 from Theorem 15.16, we consider the par-
tial derivative of a power-polynomial with respect to the second variable.
Let

fooy) = bhilx)y'

be a power-polynomial, where the b;(x) are power series in x and the
sum runs over finitely many integers i > 0. We define the partial deriva-
tive of f with respect to y to be the power-polynomial

filxy) =Y ib(x)y.

We claim that the product rule extends to power-polynomials. In fact,
let

gy =Y ¢xy

be another power-polynomial, where the c;(x) are power series in x and
the sum runs over finitely many integers j > 0. Consider the product

ulx, y) = f(x, e y) =Y bilxex)y™
with like powers of y collected. Differentiating with respect to y gives
uy(x,y) = Y i+ Hh(x)e(x)y ™" (53)
On the other hand, we have
fulx, y)g(x, y) + f(x y)gy(x, y)
= (X2 w0y ™) (X e0y’) + (32 by’ ) (X deoy™)
=Y bRy T+ jhxe(xy T

and collecting terms gives the right-hand side of (53). This proves the
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product rule
uy = fug + fgy- (54)

As in Theorem 15.14, let f(x, y) be an irreducible polynomial such
that

Ft% y) = (y— p()(y — v(t)wlt, y) (55)

for a positive integer d, power series p(t) and v(t), and a power-
polynomial w(t, y). We must prove that p(t) # v(t).

Because f(x,y) is irreducible as a polynomial, it is nonzero. Then y
appears in f(x,y), by (55), and so f,(x, y) is a nonzero polynomial of
lower degree than f(x, y). Because f(x, y) is an irreducible polynomial,
f(x, y) and f,(x, y) have no common factors of positive degree. By Theo-
rem 15.16, we can write

flx, y)k(x, y) + fy(x, YI(x, y) = r(x) (56)

for polynomials k(x, y) and I(x, y) and a nonzero polynomial r(x) not in-
volving y. Substituting t¢ for x and p(t) for y in (56) gives

Syt pNI(e?, p(6) = r(t9), (57)

since substituting p(t) for y in (55) shows that f(t¢, p(t)) = 0. Because
r(x) is nonzero, so is r(t%), and (57) shows that

filt?, p(t)) # 0. (58)

We get f:u(td, p(t)), by definition, by differentiating f(x, y) with respect
to y and then substituting x = t¢ and y = p(t). Because we can inter-
change differentiating with respect to y and substituting x = t%, we also
get f,(t4, p(t)) by differentiating f(t9, y) with respect to y and then set-
ting y = p(t). Using the product rule (54) to differentiate the right-hand
side of (55) with respect to y gives

(y —v()w(t, y) + (y — p)w(t, y) + (y — p(0)(y — v(t)) wy(t, y).
Substituting p(t) for y in this expression gives
(p(t) —v(t))w(t, p(1)).
Because this equals fy(td, p(t)), (58) shows that p(t) # v(t), and Theorem
15.14 holds.

We have proved all the intersection properties at last. Readers should
congratulate themselves for their perseverance.

Exercises

15.1. Let p(t), q(t), and u(t) be the power series in Exercise 14.1. The equations
in each part of this exercise hold for a power series r(t) of order 1, by The-
orem 15.1(ii). Find the first four nonzero terms of r(t).
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15.2.

15.3.

15.4.

15.5.

15.6.
15.7.

15.8.
15.9.

15.10.

15.11.

15.12.

IV. Parametrizing Curves

(a) p(r(t)) =t.

(b) g(r(1)) =t.

(c) u(r(t)) =t.

Let p(t), q(t), and u(t) be as in Exercise 14.1. By Theorem 15.1(i), the
power series in each part of this exercise can be multiplied by a power se-
ries v(t) to give the constant 1. Find the first four nonzero terms of v(t).

(a) 1+ p(t). (b) 14 u(s).
(c) 4+ q(1). (d) 44 u(r).
(e) =1+ p(t). (f) 24qg(t).

Each power series in Exercise 15.2 is the square of a power series s(t) of
order 0, by Theorem 15.1(iii). Find the first four terms of one such series

s(t).

For each curve f(x, y) in Exercise 14.2, use Theorems 15.10-15.13 and
your answers to Exercise 14.2 to find the number of equivalence classes
of reduced parametrizations of f at the origin. For each equivalence class,
find a positive integer e and the first four nonzero terms (or all there are)
of a power series g(t) such that (t¢, g(t), 1) is in the equivalence class.

Use appropriate technology to graph each curve in Exercise 14.2. Com-
pare the results with your answers to Exercise 15.4 as in the discussions
of Figures 15.2-15.5.

Follow the directions of Exercise 15.4 for Exercise 14.5 instead of 14.2.

Use appropriate technology to graph each curve in Exercise 14.5. Com-
pare the results with your answers to Exercise 15.6 as in the discussions
of Figures 15.2-15.5.

Follow the directions of Exercise 15.4 for Exercise 14.6 instead of 14.2.

Use appropriate technology to graph each curve in Exercise 14.6. Com-
pare the results with your answers to Exercise 15.8 as in the discussions
of Figures 15.2-15.5.

Theorems 4.6-4.8 and Definition 4.9 extend without change to the com-
plex projective plane. Let F(x, y,z) = 0 be a complex curve. Prove that F
is nonsingular at the origin if and only if F has a reduced parametrization
(k,1,1) at the origin such that k(t) or I(t) has order 1, every reduced para-
metrization of F at the origin is equivalent to (k,1, 1), and F does not equal
the product of two polynomials that both contain the origin.

In the real projective plane, let F =0 and G = 0 be curves that are both
singular at a point P. Prove that Ip(F, G) > 4 by reducing to the case where
P is the origin and using Exercise 15.10, Definitions 15.6 and 15.8, and
Theorem 4.7.

(Together with Theorem 4.11, this proves that curves F and G intersect
exactly once at a point P if and only if they are nonsingular and tangent to
different lines there. Exercise 15.18 generalizes this result.)

In the complex projective plane, a point D is called a cusp of a curve F if
every line through D except one intersects F twice there and the excep-
tional line through D intersects F' three times there.
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15.13.

15.14.

(a) Prove that a curve F has the origin (0,0, 1) as a cusp with exceptional
line y = 0 if and only if F(x, y, 1) has the form

ay® + bx® + cx®y + dxy® + ey® + terms of degree > 4 (59)

for complex numbers a-e with a and b nonzero.

(b) Let F have the form (59). Prove that F has exactly one equivalence
class of reduced parametrizations at the origin, with representative
(t2,4(t),1) for a power series

glt) =gt* +---, (60)

where g is a complex number whose square is —b/a. Prove that
Io(F,G) = 0,G(t%,q(t),1) for every curve G(x, y, z).

In the complex projective plane, a point D is called a node of a curve F if

all lines through D except two intersect F twice there and each of the two

exceptional lines intersects F three times there.

(a) Prove that a curve F has the origin (0,0, 1) as a node with exceptional
lines y = 0 and x = 0 if and only if F(x, y, 1) has the form

axy + bx® + cx*y + dxy® + ey® + terms of degree > 4 (61)

for complex numbers a-e with a, b, and e nonzero.

(b) Let F have the form (61). Prove that F has exactly two equivalence
classes of reduced parametrizations at the origin, with representatives
(t,u(t),1) and (v(t),t,1) for power series

u(t) = (=bjayt> 4+ --- and u(t) = (—efa)t* +---.  (62)

Prove that Io(F,G) = 0.G(t,u(t),1) +0,G(v(t),t,1) for every curve
G<X7 y’ Z)'

Consider the following result.

Theorem

Let (k,I,m) be a parametrization of a curve F at a point D. Then there is
a positive integer v and there is a line V(x,y,z) =0 through D such
that oW (k,Il, m) =r for every line W(x,y,z) =0 through D except V and
0:V(k,1,m) = r + s where s is a positive integer or 0.

Prove the theorem by reducing to the case where m(t) is the constant 1
and showing in this case that r is the least positive integer that is the de-
gree of a nonzero term of k(t) or I(¢). If

k(t) =ag+a,t" +--- and I(t) =Dy + byt" +---
for complex numbers a; and b; with a, and b, not both zero, show that
V(x,y,1) = 0 is the line
by(x — ag) — ar(y — bo) = 0.
(We call r the order, s the index, and V the branch tangent of the
parametrization (k, [, m). Theorem 15.5 implies that r, s, and V remain un-
changed when we replace (k, I, m) with an equivalent parametrization. It

follows as in the proof of Theorem 15.9 that transformations preserve r,
s, and V.)
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15.15.

15.16.

15.17.

IV. Parametrizing Curves

(For example, the curve f in (57) of §14 is parametrized by (41) and
(43) of this section, which each have order 1 and index 1. Their respective
branch tangents x =0 and y =0 are the lines that best approximate f
near the origin in Figure 15.2.)

Define the order, index, and branch tangent of a parametrization as in Ex-

ercise 15.14. Definition 4.9 extends to the complex projective plane with-

out change.

(a) Prove that a complex curve F is nonsingular at the origin, has tangent
line y = 0 there, and does not contain this line if and only if F(x, y, 1)
has the form

ay + bx* + k(x, y) (63)

for nonzero complex numbers a and b, a positive integer s, and a
polynomial k(x, y) in which every term has either y?, xy, or x°*2 as a
factor.

(b) Let F have the form (63). Prove that F has exactly one equivalence
class of reduced parametrizations at the origin, with representative
(t,q(t), 1) for a power series

q(t) = (=b/a)t>Tt + ... (64)

Prove that (t,q(t),1) has order 1 and index s. Prove that Io(F,G) =
0:G(t,q(t), 1) for every curve G(x, y, z).

In the complex projective plane, let D be a point of an irreducible curve F.

Define a cusp as in Exercise 15.12, a node as in Exercise 15.13, and the

order, index, and branch tangent of a parametrization as in Exercise

15.14. Definition 4.9 extends to the complex projective plane without

change.

(a) Prove that F is nonsingular at D if and only if all reduced parametriza-
tions of F at D are equivalent and have order 1. Prove that the tangent
to F at D is the branch tangent of every reduced parametrization of F
at D.

(b) Prove that D is a cusp of F if and only if all reduced parametrizations
of F at D are equivalent and have order 2 and index 1.

(c) Prove that D is a node of F if and only if the reduced parametrizations
of F' at D all have order 1 and index 1, form two equivalence classes,
and have two different lines as branch tangents.

Define the order and branch tangent of a parametrization as in Exercise
15.14. In the real projective plane, let a curve F have a d-fold point P, as
in Exercise 4.24. Over the complex numbers, write F as a product of irre-
ducible polynomials F; and, for each i, take one representative from each
equivalence class of reduced parametrizations of F; at P. Prove that the
sum of the orders of these parametrizations is d. Prove that a line inter-
sects F more than d times at P if and only if it is the branch tangent of
one of these parametrizations.

(This supports the observation after Exercise 15.14 that the branch tan-
gents of F' at P are the lines that best approximate F there.)
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15.18.

15.19.

15.20.

15.21.

15.22.

Define d-fold points as in Exercise 4.24. The following theorem general-
izes Theorem 4.11 and Exercise 15.11. Prove it by reducing to the case
where P is the origin and combining Exercises 4.23 and 15.17 and Defini-
tions 15.6 and 15.8.

Theorem

In the real projective plane, let P be a d-fold point of a curve F and an e-fold
point of a curve G for nonnegative integers d and e. Then Ip(F,G) > de, and
equality holds if and only if no reduced parametrization of F at P over the com-
plex numbers has the same branch tangent as a reduced parametrization of G
at P over the complex numbers.

Let m be a positive integer. Over the real numbers, let f(x, y), g(x, y), and
w(x, y) be polynomials such that every term of w has degree at least m.
Prove that Io(f,g) > m if and only if Io(f, g+ w) > m. (See Definitions
15.6 and 15.8 and Properties 1.3 and 3.1.)

Over the real numbers, let f(x, y) = 0 be a curve that is nonsingular at the
origin and tangent there to the line y = 0. Let g(x, y) be a polynomial, and
let m be a positive integer.

(a) Prove that we can write

g=ptw+fr

for polynomials p(x), w(x, y), and r(x, y) such that p(x) does not in-
volve y and every term of w(x, y) has degree at least m.

(Hint: One approach is to show that y = ¢f + v for a nonzero real
number ¢ and a polynomial v(x, y) in which every term has degree at
least two. Start with g(x, y), and repeatedly substitute c¢f + v for y.)

(b) Prove that Io(f,g) = m if and only if we can write

g=w+ fr

for polynomials w(x, y) and r(x, y) such that every term of w(x, y) has
degree at least m.

(c) Let h(x,y) be a polynomial, and assume that Io(f,g) > m and
Io(f,h) = m. Prove that Ip(g,h) > m by using part (b), its analogue
with h in place of g, and Exercise 15.19.

In the real projective plane, let F,, G, and H be curves, and let A be a point

at which F is nonsingular.

(a) Prove that I, (G, H) is greater than or equal to the smaller of I,(F, G)
and I, (F, H). (See Exercise 15.20(c).)

(b) If G is also nonsingular at A and I,(F, G) > I4(F, H), deduce from part
(a) that I, (G, H) = I,(F, H). (This shows that we can replace the line L
in Theorem 9.4 with any curve F nonsingular at A.)

In the real projective plane, let F, G, and H be curves nonsingular at a
point A. Deduce from Exercise 15.21 that two of the numbers I,(F, G),
IA(F,H), and I4(G, H) are equal and have a common value less than or
equal to the third. (Each part of Exercise 10.15 shows that all values of in-
tersection multiplicities allowed above can occur. Exercise 10.16 shows
the need to assume that F, G, and H are all nonsingular at A.)
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15.23. We work over the real numbers in this exercise. An irreducible curve F is
rational if there are polynomials k(t), I(t), and m(t) such that (k,I,m) is
a parametrization of F. For example, Exercises 10.20(a), 10.21(a), and
10.22(a) show that (22)—-(24) of §8 are rational. Let d be a positive integer.
(a) Let p(x,y) and q(x, y) be polynomials such that every term of p

has degree d, every term of q has degree d+ 1, and p and g have
no common factors of positive degree. Prove that the homogenization
of p(x,y) +q(x, y) is parametrized by x = p(1,t), y=1tp(1,t), and
z=—q(1,1).

(b) Let F be an irreducible curve of degree d + 1 that has a d-fold point, as
defined in Exercise 4.24. Conclude from (a) and Exercise 4.23 that F is
rational.

(Taking d = 1 shows that every conic is rational, which also follows
from the discussion before Theorem 5.9 and the parametrization
(t,t2,1) of yz = 2. Taking d = 2 in (b) shows that every singular cubic
is rational, and (a) accounts for part (a) of Exercises 10.20-10.22. See
pp. 28-29 of Miles Reid’'s book Undergraduate Algebraic Geometry,
listed in the references, for an accessible proof that no nonsingular
cubic is rational.)

§16. Envelopes of Curves

Having proved the duality of conics and their envelopes in §7, we extend
that duality to curves of higher degree in this section. In the real projec-
tive plane, let F' be an irreducible curve of degree at least two that has
infinitely many points. We prove in Theorem 16.4 that the basic polarity
maps the tangent lines of F' to points of an irreducible curve G. Like F, G
has degree at least two and contains infinitely many points in the real
projective plane. We use parametrizations to prove in Theorems 16.5
and 16.6 that the relationship between F and G is symmetric: the basic
polarity maps the tangent lines of each curve to points of the other. In
effect, each of the curves F and G is the equation of the envelope of the
other. We determine the degree of G in Theorem 16.10 by intersecting F'
with curves called polars: the polar of a point P with respect to F' is a
curve that intersects F at the singular points of F and the points where
F has a tangent line passing through P.

We work over the real numbers in this section, unless otherwise stated.
We can rewrite the slope-intercept form for a nonvertical line in the
Euclidean plane as

hx+y+1=0 (1)
for real numbers h and I. We get (1) from the usual form

hx +ky+1z=0 (2)
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of a line in homogeneous coordinates by setting z =1 and k = 1, which
corresponds to dividing (2) by z # 0 and k # 0 and changing notation.
When we say that a line has coefficients h and [ or coefficients h, k, and
I, we are referring to (1) or (2), respectively.

Let f(x, y) be an irreducible curve of degree at least two that has infi-
nitely many points in the Euclidean plane. We want to find the coeffi-
cients h and [ of the tangent line to f at a point (a, b) with fy(a,b) # 0.
By Theorem 12.1, the tangent line at (a, b) has equation

fila,b)x + fy(a, bly — afi(a,b) — bfy(a,b) = 0. (3)
Dividing by f,(a,b) # 0 gives the tangent line the form (1) for

h = fya,b)/f,(a,D),

which we rewrite as

hfy(a,b) = fia,D). (4)

For (1) to be the tangent line to f at (a, b), it must contain this point, and
so we must have

ha+b+1=0. (5)
Because (a, b) is a point of f, we have

fla,b) = 0. (6)

For any point (a, b) with f,(a, b) # 0, Equations (4)-(6) say precisely that
(a,b) is a point of f whose tangent line has coefficients h and I: (4) deter-
mines h, and then (5) determines [. By Theorem 12.1, f,(a,b) # 0 for a
point (a, b) of f exactly when f has a nonvertical tangent there.

We change notation by replacing the particular point (a, b) of f with a
variable point (x, y) of f and by replacing the particular coefficients h
and [ of the tangent line to f at (a, b) with variable coefficients u and w
for the tangent line to f at (x, y). In this notation, Equations (4)-(6) are

ufy(x, y) = filx, y), (7)
ux+y+w=0, (8)
f(x,y) = 0. (9)

These are the equations for the coefficients u and w of the tangent line to
f at a general point (¥, y) of f. We combine these equations to eliminate
x and y and get an equation in u and w of minimal degree. This is the
equation of the envelope of f, that is, it is an equation for the coefficients
u and w of the tangent lines to f. In homogeneous coordinates (x, y, z),
the coefficients of tangent lines are u, v, and w.

For example, consider

fry) =y—x -1 (10)
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This polynomial is irreducible because it has degree 1 in y and no factors
of positive degree without y. It has degree 3, and the curve f = 0 has in-
finitely many points. For f in (10), Equations (7)-(9) become

u = —3x% (11)
ux+y+w=0, (12)
y=x>+1. (13)

We want the equation in u and w of smallest degree that follows from
(11)-(13). We eliminate y from (12) by using (13) to substitute for y,
which gives

ux+x*+1+w=0.

Multiplying this equation by 3 and subtracting x times (11) eliminates x3
and gives

2ux = —3(w + 1). (14)
To eliminate x from (11), multiply (11) by 4u? to get
4u® = —3(2ux)?
and use (14) to substitute for 2ux to get
4ud = =27(w + 1)~ (15)

We will see after Theorem 16.4 that (15) is the equation of least degree
satisfied by the coefficients u and w of the tangent lines to (13).

In general, we want to eliminate x and y from the three equations
(7)-(9) in x, y, u, and w to get one equation in u and w. Solving (8) for
y and using this to eliminate y from (7) and (9) gives two equations in u,
w, and x:

ufy(x, —ux — w) = filx, —ux —w), (16)
f(x,—ux —w) = 0. (17)

We want to combine these two equations to eliminate x and get one
equation in u and w.

In Theorem 15.16, we took two polynomials in two variables and
found a nonzero sum of multiples of the polynomials that eliminates
one of the variables. The next theorem gives the same result for polyno-
mials in three variables. We postpone the proof to the end of this section
because of its similarity to the proof of Theorem 15.16.

Theorem 16.1

Let p(u,w, x) and q(u, w, x) be polynomials that have no common factors of
positive degree. Then there are polynomials d(u, w,x) and e(u,w,x) and a
nonzero polynomial r(u, w) not involving x such that

plu,w, x)d(u, w, x) + q(u, w, X)e(u, w, x) = r(u, w). O
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To study envelopes in the projective plane, we need equations of tan-
gent lines in homogeneous coordinates. The next result is the analogue
of Theorem 12.1 in homogeneous coordinates.

Theorem 16.2

Let (a, b, ¢) be a point of a curve F(x, y, z). Then F is nonsingular at (a, b, c) if
and only if at least one of the quantities Fy, Fy, F, is nonzero at (a,b,c). In
this case, the tangent to F at (a, b, c) is the line

Fua,b,c)x+ Fy(a,b,c)y + F,(a,b,c)z = 0. (18)

Proof

Because the theorem treats x, y, and z symmetrically and at least one co-
ordinate of the point (a, b, c) is nonzero, we can assume that ¢ # 0. If F/
has degree n, then F, is either homogeneous of degree n — 1 or the zero
polynomial. In either case, we have

Fyla,b,c) = c" 'Fyla/c,b/c,1)

and analogous equations for F,, and F,. Relabeling lets us assume that
¢ = 1 and the given point has coordinates (a, b, 1).
Because F(a,b,1) = 0, Equation (21) of §12 shows that

aFy(a,b,1) + bFy(a,b,1) + F,(a,b,1) = 0. (19)

Thus, at least one of the quantities Fy, F, F, is nonzero at (a, b, 1) if and
only if F, or Fy, is nonzero at (a, b, 1). This happens if and only if F is non-
singular at (a, b, 1), by Theorem 12.1 and Equations (29) and (34) of §12.
When F is nonsingular at (a,b,1), the tangent there is given by (3),
which we can rewrite as

Fx(asba1>X+Fy<aabal>y+FZ<aab:1) :O <20)

by (29) and (34) of §12 and (19) above. The homogeneous form of (20) is
(18). O

The next result lets us use the complex numbers to study the envel-
opes of curves over the real numbers.

Theorem 16.3

Let F be an irreducible curve over the real numbers that has infinitely many
points in the real projective plane. Then F remains irreducible over the com-
plex numbers.

Proof

We claim that F has finitely many singular points in the real projective
plane. Since at least one variable appears in F, we can assume that y
does. Then F, is nonzero, and so it has no factors of positive degree in
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common with F (since F is irreducible of degree greater than F,). Thus,
F and F}, intersect at finitely many points (by Theorem 11.10). F' is non-
singular at all of its other points, by Theorem 16.2.

Over the complex numbers, let U be an irreducible factor of F. By
Theorem 11.8, either (i) there is a complex number k # 0 such that kU
has real coefficients or (ii) UU has real coefficients and is a factor of I
over the real numbers.

If (i) held, the irreducibility of F over the real numbers would imply
that it is a constant multiple of UU. Then any point of F in the real pro-
jective plane would lie on either U or U, and so it would lie on both U
and U (by the remarks before Property 12.6). Any line through such a
point would intersect both U and U at least once there (by Theorem
3.6(iii)), and so it would intersect F at least twice there (by Theorem
3.6(v)). Thus, F would be singular at each of its points in the real projec-
tive plane (by Definition 4.9). This would contradict the first paragraph
of the proof, since F has infinitely many points in the real projective
plane.

We now know that condition (i) holds. Then F is a multiple of kU over
the real numbers (by Theorem 11.7(ii)), and so it is a constant multiple
of kU (since F is irreducible over the real numbers). Thus, F is irreduc-
ible over the complex numbers. O

We can now generalize the process of deriving Equation (15) from
Equations (11)-(13). We prove that the coefficients of the tangents to a
curve F lie on a unique curve G of minimal degree. Recall that we con-
sider two curves to be the same when they differ by a nonzero constant
factor (as after the proof of Theorem 3.6). Recall also from the start of
§7 that the basic polarity interchanges points (h,k,I) with lines
hx + ky + Iz = 0 and preserves incidence.

Theorem 16.4
Let F(x, y, z) be an irreducible curve of degree at least two that has infinitely
many points.

(i) Then there is a unique irreducible curve G(u, v, w) that contains every
point (h, k,1) such that the line hx + ky + Iz = 0 is tangent to F.

(ii) Let S(u,v,w) be any curve whose points (h k1) have images
hx + ky + Iz = 0 under the basic polarity that include the tangent lines
to F at infinitely many points. Then S has G as a factor.

(iii) G has degree at least two and contains infinitely many points.

Proof

Because F(x, y, z) has degree at least two and is irreducible over the com-
plex as well as the real numbers (by Theorem 16.3), y appears in F (by
the paragraph before Theorem 11.3). Then F and F, have no common
factors of positive degree and intersect at finitely many points, by the
first paragraph of the proof of Theorem 16.3. These are the points where
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F is singular or has a tangent line containing the point (0, 1, 0) (by Theo-
rem 16.2).

Since F is irreducible and has degree at least two, it does not have z as
a factor, and so F intersects the line at infinity z = 0 at finitely many
points (by Theorem 4.5). Thus, the previous paragraph and the assump-
tion that F' has infinitely many points in the real projective plane imply
that F has infinitely many points in the Euclidean plane at which it is
nonsingular and its tangent line is not vertical.

We claim that any point in the real projective plane lies on tangent
lines at only finitely many points of F'. In fact, the first paragraph of the
proof shows that this is true for the point (0,1, 0), and the claim follows
because any point can be transformed to (0,1,0) (by Theorem 3.4). In
particular, the claim implies that any line is tangent to F' at only finitely
many points. It follows that F' has infinitely many tangent lines, since F
is nonsingular at infinitely many points (by the previous paragraphs).

Let f(x,y) = F(x, y,1). Equations (16) and (17) correspond to the poly-
nomials

ufy(x, —ux — w) — fulx, —ux —w) and flx,—ux —w). (21)

We claim that these two polynomials have no common factors of posi-
tive degree. If they did, then so would the polynomials we get by substi-
tuting —y — ux for w, namely,

ufyxy) - filx,y)  and  f(x,y)

(since the substitution is reversed by replacing y with —ux — w). Then
f(x, y) and f,(x, y) would have a common factor of positive degree (since
u does not appear in f(x, y)), and this would contradict the first para-
graph of this proof (by (34) of §12).

Because they have no common factors of positive degree, there is a
sum of multiples of the polynomials in (21) that is a nonzero polynomial
r(u, w) not involving x (by Theorem 16.1). It follows that r(h,I) = 0 for
any real numbers h and [ such that the polynomials in (21) become
zero when we substitute h for u, I for w, and any number for x. The dis-
cussions of (3)-(9), (16), and (17) show that r(h,1) = 0 for the coefficients
h and I of any nonvertical line tangent to f at a point in the Euclidean
plane.

Let R(u, v, w) be the homogenization of the polynomial r(u, w). Theo-
rem 16.2 and the last sentence of the previous paragraph imply that
R(Fy, Fy, F;) = 0 at any point in the Euclidean plane where F is nonsingu-
lar and its tangent is not vertical. There are infinitely many such points
(by the second paragraph of the proof), and so F and R(F,, F);, F;) have a
common factor of positive degree (by Theorem 11.10). Thus, since F is
irreducible, it is a factor of R(Fy, Fy, F).

Factor R(u, v, w) over the real numbers into a product of irreducible
homogeneous polynomials G;(u,v,w). Over the complex numbers, F
is irreducible (by Theorem 16.3) and a factor of the product of the
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Gi(Fy, Fy, F;), and so it is a factor of at least one of the G;(Fy, Fy, F;) (by
Theorem 15.7 on unique factorization over the complex numbers).
Thus, over the real numbers, we have found an irreducible polynomial
G(u,v,w) such that F is a factor of G(Fy, Fy;, F;) (by Theorem 11.7(ii)). It
follows that

G(Fy(a,b,c), Fy(a,b,c), Fs(a,b,c)) = 0

whenever F(a,b,c) =0. Thus, we have G(h,k,I) =0 for every line
hx + ky + 1z = 0 tangent to F at any point (a,b,c), by Theorem 16.2.
This proves the existence of the curve G in (i).

Let S(u,v,w) be any curve whose points (h,k,I) have images
hx + ky + Iz = 0 under the basic polarity that include tangent lines to F
at infinitely many points. Because no line is tangent to F' at infinitely
many points (by the third paragraph of the proof), S contains infinitely
many points (h, k,I) such that the lines hx + ky + Iz = 0 are tangent to F.
Then S and G intersect at infinitely many points (by the last paragraph),
and so they have a common factor of positive degree (by Theorem
11.10). Since G is irreducible, it is a factor of S, proving (ii).

If the homogeneous polynomial S(u, v, w) in the last paragraph is irre-
ducible, then it must be a constant multiple of G, and so S and G repre-
sent the same curve. Together with the last two paragraphs and the as-
sumption that F has infinitely many points, this shows that G is unique
and completes the proof of (i).

Because F has infinitely many tangent lines and only finitely many
of them contain any point (by the third paragraph of the proof), the tan-
gent lines to F are not all concurrent. Applying the basic polarity
shows that G has infinitely many points and they are not all collinear,
proving (iii). O

Let F be irreducible of degree at least two and have infinitely many
points. We call the curve G in Theorem 16.4 the dual of F. We define the
envelope of F to be the set of lines hx 4+ ky + Iz = 0 for all points (h, k, ) of
G. Thus, we get the lines of the envelope of F by applying the basic polarity
to the points of the dual of F. In effect, the dual G of F' is the equation of the
envelope of F. The envelope includes all tangent lines to F' (by Theorem
16.4(i)). It has no other lines when F is a conic (by Theorem 7.4), as in
the first sentence of §7. Note that we are dualizing curves here instead of
theorems (as in §7).

We have seen that Equation (15) holds for the coefficients u and w of
every tangent line to (13) in the Euclidean plane. Since (15) is irreduc-
ible (by Theorem 8.1(i)), it is the dual of (13) (by Theorem 16.4(ii)).

In Theorem 7.4, each of the conics K and K* is the dual of the other.
This symmetric relationship between conics and their duals extends to
curves of higher degree. We base the proof on parametrizations. Because
of the connections between tangents and partial derivatives in Theorems
12.1 and 16.2, we consider derivatives of power series.
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Let
pt) =" ait' = ag+ art + art? + azt® + -

be a power series. We define its derivative to be the power series
p(t) = EZ ait' =Y iait™" = ay + 2at + 3azt® + - -
At i i 3 .

Just as we treat the power series p(t) algebraically without substituting
nonzero numbers for t, we define its derivative algebraically without
using limits.

Let q(t) = >_ bit' be another power series. Calculus suggests that

2 (plt) +a0) = P'(6) +q'(0), (22)

and we can easily check this: the left side of (22) is
d ; . i
§Z(ai+bi>t = Z i(a; + byt

= Z l.élitl;l + Z ibitiil,
which is the right side of (22). If ¢ is a constant, the usual rule

d

%(Cpﬁ‘)) = cp/(t) (23)

holds because

d ; 4 ,
% (Z caiﬂ) = Z icatt! = cz ia;tl.
We can also check the product rule

d

%@(t)q(t)) = p'(t)gq(t) + p(t)q'(1): (24)

the right side of (24) is
(5 ) (5 50) (S ) (S )
=" abt ™+ jap v
= (i+ a7

= %Z aibjti”,

which is the left side of (24).
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If #(t) is a third power series, the product rule generalizes to the
relation

a (par) = p'ar + pq'r + pgr': (25)
dt
the left side of (25) is

2 (pa)r) = (pa)'r + par' (by (24))

at
= (p'q+pd)r + par’
(by (24)), which equals the right side of (25). Likewise, it follows that
d
a(plp},Z) :p{pzpn_i_plpépn_i_+p1p)171p£l
for power series p;(t),..., pn(t). Taking p;, ..., p, to be the same power
series p(t) gives the generalized power rule
d n n—1_1/
e — 26
P ="y (26)

for any positive integer n. Taking p° to be the constant 1 makes (26) hold
for n =0 as well.
Consider a polynomial in two variables

fly) = 'y,

Multivariate calculus suggests that

d
2/ (pa) = pP'ip.q) +4'fy(p.q) (27)

for any power series p(t) and g(t). We can check this by combining the
results of the last two paragraphs: the left side of (27) is

d . o
72 ap'd =) ci(p'a)’ (by (22) and (23))

= l(p)'qd +p'(a)) (by(24))
= clip™'p'd + plia’ ") (by (26))
=p' Y i ' d +4' > jep'd,

and this is the right side of (27).

If a curve F has tangent line hx + ky + [z = 0 at a point (a, b, ¢), then
(h,k,1) is a point on the dual G of F' (by Theorem 16.4(i)). If G is nonsin-
gular at (h, k, 1), part (i) of the next result shows the symmetry of the re-
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lationship between F and G at their points (a, b, ¢) and (h, k, ). The proof
shows the usefulness of parametrizations in studying curves.

Theorem 16.5

Let F(x,y,z) be an irreducible curve of degree at least two that has infi-
nitely many points. Let (a,b,c) be a nonsingular point of F, and let
hx 4+ ky + Iz = 0 be the tangent line to F at (a,b,c). Let G be the dual of F,
and assume that G is nonsingular at the point (h, k,1).

(i) Then au+ bv+ cw =0 is the tangent line to G(u,v,w) at the point
(h,k, D).
(ii) The point (a, b, c) is not a flex of F.

Proof

Because the point (a, b, c) has at least one nonzero coordinate, and be-
cause the theorem treats the homogeneous coordinates x, y, and z sym-
metrically, we can assume that ¢ # 0. Dividing by ¢ and relabeling a and
b lets us assume that ¢ = 1 and (a, b, 1) is the given point of F.

Because F is nonsingular at (a, b, 1), either Fy(a,b,1) or Fy(a,b,1) is
nonzero, by Theorem 12.1 and (29) and (34) of §12. We can assume
that Fj(a,b,1) # 0 (by the theorem’s symmetry in x and y), and so k is
nonzero (by Theorem 16.2). Dividing the equation hx + ky + Iz = 0 by k
and relabeling h and [ let us assume that k =1 and

hx+y+1z=0 (28)

is the tangent line to F at (a,b,1). Because this line contains the point
(a,b,1), we have

ha+b+1=0. (29)

Set f(x,y) = F(x, y,1). Multiplying F by a nonzero constant, if neces-
sary, gives

fxy) =h(x—a)+(y—b) + Y ejlx—a)(y—D)

for real numbers e; and i+ j>2 (by Theorem 4.10). Substituting
x=t+aand y = y* + b for indeterminates t and y* gives

flt+a,y"+b) =ht+y"+ Y est'y”.

There is a power series y* = —ht + - - - with real coefficients that makes
f(t+ a, y* + b) identically zero, by the discussion of (6) in §14. Thus, we
have

flt+a,q(t) =0 (30)
for a power series

gt)=b—ht+--- (31)
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with real coefficients. Using (27) to differentiate the left side of (30) with
respect to t shows that
flt+a,q) +q'f(t+a,q) =0. (32)
Substituting
(t+a,q(t),1) (33)

into F(x, y,z) gives zero (by (30)), and so (33) is a parametrization of F
(by Definition 15.2). F is a factor of G(Fy,Fy, F;), by the fourth-to-last
paragraph of the proof of Theorem 16.4. The last two sentences imply
that

G(Fy(t+a,q,1),Fy(t+a,q,1),F,(t+a,q,1)) = 0. (34)
Because F(t + a, q(t),1) = 0, Equation (21) of §12 shows that
(t+a)F(t+a,q,1) +qFy(t+a,q,1) + F,(t+a,q,1) =0.
Using this equation to eliminate F, from (34) and applying (29) and (34)
of §12 gives
G(filt+a,q), fy(t+a,q), —(t + a)filt + a,q) — qfy(t + a,q)) = 0.

We can eliminate f, from this equation by using (32), which gives

G(—=q'fyt +a,q), f(t+a,q),(t +a)q'f,(t + a,q) — afy(t +a,q)) = 0. (35)

Let m be the degree of the homogeneous polynomial G(u, v, w). The
factor of f,(t + a,q) in every coordinate of (35) lets us rewrite that equa-
tion as

fylt+a,q)]"G(—q',1,(t+a)q" —q) =0. (36)

The constant term of the power series f,(t +a,q(t)) is f,(a,b) (by (31)),
and this is nonzero (by the second paragraph of the proof and (34) of
§12). Thus, Equation (36) and the discussion before (13) of §14 imply
that

G(—q',1,(t+a)q" —q) = 0. (37)

Equation (37) is the key connection between F and its dual G: it relates G di-
rectly to the parametrization (33) of F.

If the power series ¢g(t) had no terms of degree greater than 1, (30) and
(31) would give the equation

flt+a,b—ht) = 0.

Substituting x — a for t would show that f(x, b — h(x — a)) is the zero poly-
nomial, and so f(x, y) would have y — b + h(x — a) as a factor (by Theo-
rem 1.9(ii)). Because this contradicts the assumption that F(x, y, z) is ir-
reducible of degree at least two, g(t) has a nonzero term of degree greater
than 1.
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Let pt**! be the nonzero term of g(t) having smallest degree greater
than 1; p is a real number, s is an integer, and we have

p#0 and s>1. (38)
By (31), we have
q(t) =b —ht + ptSt F 52 4 ... (39)
for a real number r (possibly zero). Differentiating gives
qdt)=-h+(s+1)pts+ (s + 2)rt ... (40)
Set g(u, w) = G(u, 1, w). Then Equation (37) becomes
g(—q,(t+a)q —q) =0. (41)

Because (28) is a tangent line to F, (h,[) is a point of g (by Theorem
16.4(i)). By Theorem 4.10, we can write

gluw) =du—h) +ew—10+Y_ nyu—h(w-1 (42)
for real numbers d, e, and n;, where

i+j>2 (43)

in the sum.
To use (41), we set u = —q' and w = (t + a)q’ — q in (42). This replaces
u — h with

—q' —h=—(s+1)pt* —(s+2)rt5 ...
(by (40)) and w — I with
(t+a)g —q-—1
= (t+a)—h+(s+1)pt°+ (s+ 2t .. ]
—b+4ht—ptsT ... —1 (by (39) and (40))
= (s+ 1)apt® + (sp + (s + 2)ar)t* + ...
(by (29)). Then the right side of (42) becomes
dA[—(s+1)ptS — (s + 2)rt" 4 ..]
+e[(s+ Dapt® + (sp + (s + 2)ar)t* + -]
+ > y(—(s+ 1)pt* + ) (s + Dapt* +--- ). (44)

This is identically zero, by (41), and so each power of t ends up with co-
efficient zero when we collect terms in (44).

When the summation at the end of (44) is expanded, the degree of
each term is at least 2s (by (43)), which is greater than s (by (38)).
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Thus, the coefficient of ¢* in the expansion of (44) is
(s + 1)p(—d + ea).
Since this is zero, (38) implies that
d=ea. (45)

The hypothesis that G(u, v, w) is nonsingular at (h, 1,1) means that d and
e are not both zero and that

dlu—h)+ew—1)=0 (46)

is the tangent line to g(u,w) at (h,I), by (42) and Theorem 4.10. Then
(45) implies that

e #0, (47)
and dividing (46) by e gives the equation
alu—h)+w—-1=0

for the tangent line to g(u, w) at (h,l). Collecting terms and homogeniz-
ing this equation shows that the tangent line to G(u, v, w) at (h,1,1) is

au+ (—ah—lv+w=0.

We can rewrite this equation as au + bv + w = 0 by (29). This proves (i),
by the first two paragraphs of the proof.

Collecting the coefficients of the t57! terms in (44) before the summa-
tion gives

—(s+2)dr + esp + (s + 2)ear = esp

(by (45)). Since this is nonzero (by (38) and (47)), the only way that the
t5*1 terms in (44) can all cancel is if the summation produces a t*! term.
Since every term in the summation has degree at least 2s (by (43)), (38)
implies that

s=1. (48)

We deduce from this that (a, b, 1) is not a flex of F.

The transformation x* = x — az, y* = y, z* = z takes the parametriza-
tion (33) of F(x, y, z) to a parametrization (t, q(t),1) of F(x* + az*, y*,z*)
(by the second paragraph of the proof of Theorem 15.9). Because
(t,q(t),1) is reduced (by Theorem 15.11), so is (33) (by the fourth para-
graph of the proof of Theorem 15.9).

Because F is nonsingular at (a,b,1), it intersects any line through
(a,b,1) except the tangent to F exactly once there. Thus, Definition
15.6 and the previous paragraph imply that every reduced parametriza-
tion of F at (a, b, 1) is equivalent to (33). Then the number of times that F
intersects its tangent line at (a, b, 1) is the order of the power series we
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get by substituting (33) into the left side of (28). That power series is
hit+a)+b—ht+pt*+-- +1

(by (39) and (48)), which simplifies to pt? + --- (by (29)), and so it has
order 2 (by (38)). Then F intersects its tangent at (a, b, 1) exactly twice
there, and (a, b, 1) is not a flex of F. O

If a curve F has dual G, recall that the basic polarity interchanges the
points of G with the lines of the envelope of F (as after the proof of Theorem
16.4). The envelope consists of the tangent lines to F and finitely many other
lines, by Theorem 16.4(i) and parts (ii) and (iii) of the next result. Part (i)
shows that the relation between a curve and its dual is symmetric: each of
them is the dual of the other, which means that the points of each give the
coefficients of the lines in the envelope of the other.

Theorem 16.6

Let F(x, y, z) be an irreducible curve of degree at least two that has infinitely
many points. Let G(u, v, w) be the dual of F. Let Fy be the set of nonsingular
points of F whose tangent lines are mapped by the basic polarity to nonsingu-
lar points of G. Let Gy be the set of nonsingular points of G whose tangent
lines are mapped by the basic polarity to nonsingular points of F.

(i) Then F is the dual of G.

(ii) Fy includes all but finitely many points of F, and Gy includes all but fi-
nitely many points of G.

(iii) The points of Fy and Gy are matched up by associating points (a, b, c) of
Fo and (h,k,1) of Gy when hx + ky+1z =0 is the tangent line to
F(x,y,z) at (a,b,c) and au+bv+cw =0 is the tangent line to
Glu,v,w) at (h, k,1).

Proof

Let (a, b, c) be a point of Fy. Then F(x, y, z) is nonsingular at (a, b, c) and
tangent there to a line hx + ky + Iz = 0, where (h, k,1) is a nonsingular
point of G. Then au+ bv + cw = 0 is the tangent line to G(u,v,w) at
(h,k, 1), by Theorem 16.5(i), and so (h, k, ) belongs to Gy.

The first paragraph of the proof of Theorem 16.3 shows that F has fi-
nitely many singular points. The same holds for G because it satisfies the
same hypotheses as F, by Theorem 16.4. For each singular point (h, k, 1)
of G, the line hx + ky + 1z =0 is tangent to F at finitely many points
(by the third paragraph of the proof of Theorem 16.4). The last three sen-
tences and Theorem 16.4(i) show that Fj includes all but finitely many
points of F'.

G has a dual because it satisfies the same hypotheses as F (by Theo-
rem 16.4). Fy contains infinitely many points (by the previous paragraph
and the assumption that F has infinitely many points), and the basic po-
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larity maps each point (a, b, ¢) of Fy to a line au + bv + cw = 0 tangent to
G(u,v,w) (by the first paragraph of the proof). Thus, F is a multiple of
the dual of G (by Theorem 16.4(ii) with F and G interchanged). Since F
is irreducible, it is the dual of G, and (i) holds.

The second paragraph of the proof shows that Fy includes all but fi-
nitely many points of F. Since the relation between F' and G is symmet-
ric (by (i)), it follows that Gy includes all but finitely many points of G,
and (ii) holds.

By the first paragraph of the proof, any point (a, b, ¢) of Fy determines
a point (h,k,I) of Gy such that hx+ ky + 1z =0 is the tangent line to
F(x,y,z) at (a,b,c) and au + bv + cw = 0 is the tangent line to G(u, v, w)
at (h, k,1). This last condition implies that each point of F, gives a differ-
ent point of Gy. Each point of Gy arises in this way from a point of Fj be-
cause of the symmetry of F and G. Part (iii) follows. O

Because (15) is the dual of (13) (as we saw after the proof of Theorem
16.4), Theorem 16.6(i) shows that (13) is the dual of (15). We can check
this by finding the dual of (15) directly, as follows. Let

glu,w) = 4u’ +27(w +1)* (49)

be the polynomial corresponding to (15). Interchanging x with u, y with
w, and f with g in Equations (7)-(9) gives

ng(ur W) = gu(u: LU), (50>
xu+w+y=0, (51)
glu,w) = 0. (52)

The dual of g is the irreducible curve in x and y that follows from (50)-
(52) by eliminating u and w.
For g in (49), Equations (50)-(52) give
54x(w + 1) = 12u?,
xut+w+y=0, (53)
4% = =27(w+1)%. (54)
Canceling 6 on both sides of the first equation gives
9x(w + 1) = 2u?. (55)
By setting aside the point (u, w) = (0, —1) of (54), we can combine (54)
and (55) to get
L (2u®)?  [9x(w+1)]*

= —3x2. 56
4us —27(w +1)2 (56)

Since u # 0, we have x # 0, and combining (55) and (56) gives

2u?  2(—3x%)?2
w+1:—:¥=2x3. (57)
9x 9x
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Using (56) and (57) to eliminate u and w from (53) gives
O=xut+w+y=x-3x)+2x° -1 +y=y—x>—1. (58)
Thus, since (10) is irreducible, it is the dual of (15), as claimed.

We call the curves F and G in Theorem 16.6 dual because each is
the dual of the other. To relate F and G computationally, we set
f(x,y) =F(x,y,1) and g(u, w) = G(u, 1, w). We can solve (7) and (8) for
u and w in terms of x and y to get

flx, y) filx, y)
u= and w=—x - Y. (59)
(% y) fey Y
Likewise, (50) and (51) let us express x and y in terms of u and w as
_ Sulu, w) and y=—u gulu, w) —w. (60)
gwlu, w) gwlu, w)

The key relations among x, y, u, and w are given by (59), (60), (9), and
(52). For example, for f and g as in (10) and (49), (59) and (60) give

U= —3x2, w=3x>— Y,
2u? —2u® (61)
= = —w
sw+1) Yo W

in addition to (13) and (15).

The equations in (59) and (60) match up the points (x, y) of f and the
points (1, w) of g, with finitely many exceptions on each curve (by The-
orem 16.6 and the first two paragraphs of the proof of Theorem 16.4).
For example, the equations in (61) match up the points in (13) and (15)
except for the points (u, w) = (0, —1) on (15), (x,y) =(0,1) on (13), and
the points at infinity on the curves. Note that (15) is singular at (0, —1)
and (13) has a flex at (0,1), in agreement with Theorems 16.5(ii) and
16.6. When (59) and (60) match up a point (x, y) = (a, b) of f with a point
(u,w) = (h,1) of g for real numbers a, b, h, and [, then hx + y + [ = 0 is the
tangent line to f(x, y) at (a,b), and au + b+ w = 0 is the tangent line to
g(u,w) at (h,1) (by Theorem 16.6(iii)).

Let F(x, y,z) be an irreducible curve of degree at least two that has
infinitely many points. The class of F is the degree of the dual of F'. Al-
though the dual conics in Theorem 7.4 both have degree 2 and the dual
curves in (13) and (15) both have degree 3, dual curves do not generally
have the same degree. The key to finding the class of a curve F is to
count the number of tangent lines to F' that pass through a typical point
in the complex projective plane. This number is the degree of the dual of
F because it equals the numbers of points where the dual intersects a
typical line in the complex projective plane.

The polar of a point (g,r,s) with respect to a curve F(x, y,z) is the
quantity

qFy + vFy + sF. (62)
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If this is not the zero polynomial, it is a homogeneous polynomial in x, y,
and z that has degree one less than F. Multiplying F by a nonzero con-
stant does the same to (62).

The next result shows how to find the points where F has a tangent
line containing the point (g, 7,s): they are the nonsingular points of F
that lie on the polar of (g, r, s) with respect to F.

Theorem 16.7

Let E(x, y, z) be the polar of a point (q, 7, s) with respect to a curve F(x, Y, z).
Then a point (a, b, c) of F satisfies E(a, b, c) = 0 if and only if either F is sin-
gular at (a, b, c) or else the tangent line to F at (a, b, ¢) contains (q, 1, s).

Proof
Since E(x, y, z) is given by (62), we have E(a, b, c) = 0 if and only if

qFy(a,b,c) + rFy(a, b, c) + sFy(a, b,c) = 0.

This equation holds if and only if either Fi(a,b,c), F,(a,b,c), and
F,(a,b,c) are all zero or else (18) is a line that contains the point
(q,7,8). By Theorem 16.2, this happens if and only if either (a, b,c) is a
singular point of F or else F has a tangent line at (a, b, ¢) that contains
<Q> 7, S) . O

We determine the class of a curve F by using polars to determine how
many tangent lines to F pass through a typical point in the complex pro-
jective plane. We avoid messy calculations by using transformations to
simplify equations. The next result shows that transformations preserve
polars.

Let a transformation (x, y,z) — (¥, y’,z’) be given by (5) of §3 for
real numbers a-i. As in (14) and (15) of §3, substituting (6) of §3 in a
homogeneous polynomial V(x, y,z) gives a homogeneous polynomial
V' (x',y',z"). We take V'(x',y’,z') to be the zero polynomial when
V(x, y,z) is. In either case, V'(x', y’,z’) is the unique polynomial that
gives V(x, y,z) under the substitutions in (5) of §3 (which reverse those
in (6) of §3), and we say that the transformation takes V to V.

Theorem 16.8

Let a transformation take a point (q,r,s) and a curve W(x, y, z) to a point
(q',7",s") and a curve W'(x',y’,z'). Then the polar of (q,7,s) with respect
to W(x, y, z) is taken by the transformation to the polar of (q',v',s’) with re-
spect to W'(x', y', z).

Proof
Let the transformation be given by (5) of §3. We claim that

(W) = aW,, +dw,, +gW,.. (63)
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Note that each partial derivative on the right of (63) is multiplied by the
coefficient of x in the corresponding equation in (5) of §3. By interchang-
ing the roles of the variables, we conclude from the claim that

(W) =DbW,, +eW,, +hW,, (64)
(W) =cW,, + fw,, +iw]. (65)

Combining (63)-(65) shows that
(qWy + Wy, + sW,)’
=q(Wy)' +1(W,)" +s(W,)'
= (ag +br +cs)W,, + (dq +er + fS)W,, + (gq + hr +is)W,
=q'W, +1'W,, +s'W,,

by (5) of §3. Thus, the polar of (gq,7,s) with respect to W(x,y,z) is
taken by the transformation to the polar of (¢’,r’,s’) with respect to
W'(x', y’,z'), as desired.

It remains for us to prove (63). We write

¥,y 2") ijkzqu’kz (66)

for real numbers pjq. By the last sentence before the theorem, using (5)
of §3 to substitute in (66) gives

W(x,y,2) = Y pplax +by + c2)(dx + ey + f2) (gx + hy +iz)".
Differentiating with respect to x gives
Wy=a jplax+ by + cz)’ (dx + ey + f2) (gx + hy + iz)’
+d ) kpglax + by + cz) (dx + ey + f2)" " (gx + hy + i)'
+8>  Ipulax+ by +cz)(dx+ ey + f2) gx + hy +i2)™'. (67)
On the other hand, it follows from (66) that
Wi +dW,, +gW,,

:asz]_k lj— 1 1k /Z+dz kpklejy/k 1 /+gz lpklej 1k /lfll (68)

Because we get the right side of (67) from the right side of (68) by substi-
tuting the expressions for x’, y’, and z’ in (5) of §3, (63) holds (by the last
sentence before the theorem). O

Let P be a point on the tangent line to a curve F at a point D. Then D
lies on the polar of P with respect to F, by Theorem 16.7. The next result



322 IV. Parametrizing Curves

shows that I and the polar of P intersect with multiplicity one at D when
D is not a flex of F and P does not equal D.

Theorem 16.9

Let F be a curve of degree n that is nonsingular at a point D and does not
have a flex there. Let P be a point other than D on the tangent to F at D.
Then the polar of P with respect to F is a curve that intersects F' exactly once
at D.

Proof
Since D # P, we can transform D to the origin (0,0, 1) and P to the point
(1,0,0) at infinity on horizontal lines (by Theorem 3.4). Because we
can replace D, P, and F with their images under this transformation
(by Theorem 16.8 and Property 3.5), we can assume that D = (0,0, 1)
and P=(1,0,0). Let E(x, y,z) be the polar of P with respect to F. Set
f(x,y) = F(x, y,1) and e(x, y) = E(x, y,1).

The tangent to f at the origin is the line DP, which is y = 0. Multiply-
ing F' by a nonzero constant, if necessary, gives

fla,y) = y+ha* +key +ly* + - (69)
for real numbers h, k, and [ (by Theorem 4.7). Then we have
flx,0) = hx* 4+ ---. (70)

The smallest degree of a nonzero term in (70) is the number of times
that f intersects the line y = 0 at the origin (by Theorem 1.11). This
number is 2 (since f is tangent to y = 0 at the origin and does not have
a flex there), and so h is nonzero.

The polar of P = (1,0, 0) with respect to F' is

E = 1F, + OF, + 0F, = F,.
Setting z = 1 gives
e, y) = fi = 2hx+ky + -

(by (29) of §12 and (69) above). Since h # 0, E is not the zero polynomial,
e(x, y) is tangent at the origin to the line 2hx + ky = 0 (by Theorem 4.7),
and this line does not equal the line y = 0 tangent to f at the origin.
Thus, F and E intersect exactly once at the origin, by Theorem 4.11. []

We can now determine the class of a curve F in terms of the intersec-
tion multiplicities of F' and the polar of a typical point. In proving the
next result, we extend to the complex numbers without further com-
ment the definitions and results concerning singular points and tangent
lines in §4, the basic polarity in §7, flexes in §8, and duals and polars in
this section.
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Theorem 16.10

Let F be an irreducible curve in the real projective plane that has degree n > 2
and contains infinitely many points. Let g be a line that is not in the envelope
of F. Then, for all points P of q except finitely many, the class of F is

nn—1) =Y Is(F,Ep), (71)

where Ep is the polar of P with respect to F and the sum ranges over all sin-
gular points S; of F in the complex projective plane.

Proof

F remains irreducible over the complex numbers, by Theorem 16.3.
Thus, over either the real or complex numbers, F has a dual, which is
the unique irreducible curve whose points include the images under
the basic polarity of tangent lines to F at infinitely many points (by The-
orem 16.4). Accordingly, because the dual of F' over the real numbers re-
mains irreducible over the complex numbers (by Theorems 16.4 and
16.3), it is also the dual of F over the complex numbers. Thus, F has
the same class over the real and complex numbers, and g is not in the
envelope of F' over the complex numbers. Accordingly, we work over the
complex numbers for the rest of the proof.

Let G be the dual of F. The degree m of G is the class of F, and we
must prove that this equals (71) for all but finitely many points P on
the line g. We divide the proof into three claims. Let Fy and Gy be as in
Theorem 16.6, and let Q be the point paired with the line g by the basic
polarity.

Claim 1
All lines on Q except finitely many intersect G at exactly m different points,
which all belong to Gy.

Because ¢ is not in the envelope of F, Q does not lie on G. Since Gy
includes all but finitely many points of G (by Theorem 16.6(ii)), all lines
through Q except finitely many intersect G only at points of Gy. Q lies on
finitely many tangent lines to G, by the third paragraph of the proof of
Theorem 16.4 (since G satisfies the same hypotheses as F in Theorem
16.4). The last two sentences imply that every line p through Q except
for finitely many intersects G only at points of Gy where G has a tangent
line not equal to p. G intersects p with multiplicity 1 at such points (by
Definition 4.9). Claim 1 follows because G intersects p a total of m times,
counting multiplicities, in the complex projective plane (by Theorem
11.1).

Claim 2
All points on q except finitely many lie on tangent lines to F at exactly m dif-
ferent points of F.
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Let P be a point on g that has the following property: the basic polarity
maps P to a line p through Q that intersects G at exactly m different
points, which all belong to Gy. All but finitely many points P on g have
this property, by Claim 1 and the fact that the basic polarity preserves
incidence.

Combining the basic polarity with Theorem 16.6(iii) shows that P lies
on the tangent line hx + ky + 1z = 0 to F at a point (a, b, c¢) of Fy if and
only if p contains the point (h, k,[) of Gy, where different points (a, b, ¢)
of Fy correspond to different points (h, k, [) of Gy. Thus, P lies on the tan-
gent lines to F at exactly m different points of F, by the last paragraph.

We must show that these m points of Fjy are the only points of F' that
have tangent lines containing P. In fact, suppose that P lies on the tan-
gent line hx + ky + 1z =0 to F at a point (a, b,c). Then (h, k,[) is a point
of G (by Theorem 16.4(i)), and it lies on p (since the basic polarity pre-
serves incidence). It follows that (h, k, [) belongs to Gy (by the second-to-
last paragraph), and so G is nonsingular at (h, k,[). Then (a, b, c) belongs
to Fy, as desired.

Claim 3
For all points P on q except finitely many, (71) is the number of points where
F has a tangent line containing P.

Let Ep(x, y,z) be the polar of a point P with respect to F. Infinitely
many points of F have tangent lines that do not contain P (by the third
paragraph of the proof of Theorem 16.4), and these points do not lie on
Ep (by Theorem 16.7). Thus, Ep is nonzero, and so it is a curve of degree
n —1 (as noted after (62)). Since F is irreducible of degree n, it has no
factors of positive degree in common with Ep. Thus, F and Ep intersect
n(n — 1) times, counting multiplicities, in the complex projective plane
(by Bezout’s Theorem 11.5).

Because no flex of F belongs to Fy (by Theorem 16.5(ii)) and Fy in-
cludes all but finitely many points of F (by Theorem 16.6(ii)), F' has fi-
nitely many flexes. Because ¢ is not tangent to F' (by Theorem 16.4(i)),
each tangent line to F intersects g at a unique point. Thus, finitely many
points of g lie on tangent lines to F at flexes. It is also true that g inter-
sects I at finitely many points (by Theorem 11.1, since F is irreducible
of degree at least 2). Thus, all points P on g except finitely many are such
that P does not lie on F' or on the tangent line to F' at a flex.

Let Ep be the polar of such a point P. Ep intersects F' with multiplicity
one at each point where F has a tangent line containing P (by Theorem
16.9). Thus, by Theorem 16.7, the total number of times that F and Ep
intersect, counting multiplicities, is the number of points where F has a
tangent line containing P plus the sum of the intersection multiplicities
of F and Ep at the singular points of F. Since F and Ep intersect a total of
n(n — 1) times, counting multiplicities (by the second-to-last paragraph),
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(71) is the number of points of F that have tangent lines containing P.
This proves Claim 3.

All points on g except finitely many satisfy the properties in both
Claim 2 and Claim 3. Taking any such point P shows that (71) is the class
m of F because both quantities equal the number of points of F that have
tangent lines containing P. O

The following restatement of Claim 2 is worth noting: in the complex
projective plane, the class of an irreducible curve of degree at least two is the
number of tangent lines passing through a typical point in the plane.

Theorem 16.10 is useful in finding the dual G of a curve F. Suppose
we use Equations (7)-(9) to find a curve T satisfied by the coefficients
of the tangent lines to F' at infinitely many points. Then T is a multiple
of G, by Theorem 16.4(ii). It follows that T equals G (up to multiplication
by a constant) if Theorem 16.10 shows that the degree of T is the class of
F, the degree of G. It may be easier to do this than to check directly that
T is irreducible.

For example, consider

flr,y) =%y —y -1 (72)
It is irreducible because its degree in y is 1 and it has no factors of posi-
tive degree without y. The curve f = 0 has infinitely many points be-
cause each value of x except +1 determines a value of y. Thus, since f
satisfies the hypotheses of Theorem 16.4, it has a dual.
For f in (72), Equations (7)-(9) become

u(x* — 1) = 2xy, (73)
ux+y+w =0, (74)
(x* =1y =1. (75)

We want the equation in u and w of least degree that follows from (73)-
(75) by eliminating x and y. Using (74) to eliminate y from (73) gives

u(x? = 1) = 2x(—ux — w),
which simplifies to
Bux® + 2wx —u = 0. (76)

Multiplying (75) by 3u gives
(Bux* — 3u)y = 3u.

Using (76) to eliminate 3ux? from this equation and using (74) to elimi-
nate y gives

(—2wx — 2u)(—ux — w) = 3u.
This simplifies to
2uwx? + (2u? + 2w x + (2uw — 3u) = 0. (77)
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To eliminate x2, multiply (77) by 3, multiply (76) by 2w, and subtract.
Collecting terms gives

(6u? + 2w)x = —8uw + 9u. (78)
Multiplying (76) by (6u? + 2w?)? gives
3uf(6u? + 2w?)x]?* + 2w(bu? + 2w?)[(6u? + 2w?)x] — u(bu? + 2w?)? = 0.
Using (78) to eliminate x from this equation gives
Bu(—8uw + 9u)? + 2w(6u? + 2w?)(—8uw + u) — u(6u? 4+ 2w?)? = 0.
Multiplying this out, collecting terms, and dividing by —9 gives
4u® — 8ulw? + 4uw* + 36uw — 4uw® — 27u = 0.

The left side of this equation has a factor of u, which we can drop be-
cause u is 0 only when x or y is 0 (by (73)) and we can disregard any fi-
nite number of points of (75) (by Theorem 16.4(i) and (ii)). This gives

4u* — 8utw? + 4w* + 36uw — 4w — 27u’ = 0. (79)

The curve (79) is a multiple of the dual of f (by Theorem 16.4(ii)).
They are equal if the dual of f has degree 4, like (79). We need only de-
duce from Theorem 16.10 that f has class 4.

Homogenizing (72) gives

F(x,y,2) = x*y — yz* — 2°. (80)
Taking partial derivatives gives
F, = 2xy, (81)
Fy=x*—2z% (82)
F, = —2yz — 3z°. (83)

By Theorem 16.2, F is singular only where all three partial derivatives
are zero. If z # 0, F, =0 implies that x # 0, and F, = 0 implies that
y # 0, and so (81) gives Fy # 0. If z =0, F,, = 0 implies that x = 0, and
the corresponding point (x, y,z) = (0,1, 0) lies on F and makes all three
partial derivatives (81)-(83) zero. Thus, (0, 1, 0) is the one singular point
of F in the complex projective plane.

The curve (79) does not contain the point (u, w) = (1, 0), which has
homogeneous coordinates (u, v, w) = (1,1, 0). This point does not lie on
the dual of f (which is a factor of (79)), and so the envelope of F does
not contain the image of (1,1, 0) under the basic polarity, which is the
line 1x + 1y + 0z = 0. Thus, we can take the line g in Theorem 16.10 to
have equation x + y = 0. The points of the Euclidean plane on this line
are (d, —d, 1) for all real numbers d. The polars of these points are

dFy — dFy, + 1F, = 2dxy — dx* + (d — 3)z* — 2yz, (84)
by (81)-(83).
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To apply Theorem 16.10, we must find the number of times that
(80) and (84) intersect at the singular point (0, 1,0) of F. To make the z-
coordinate 1, we interchange y and z and determine the intersection
multiplicity of

Xz —zy’ — y® and  2dxz — dx* + (d — 3)y* — 2zy

at (0,0,1). We set z =1 (by Property 3.1) and count the number of times
that

-y -y (85)
intersects
2dx — dx* 4 (d — 3)y* — 2y (86)

at the origin (x, y) = (0,0). We eliminate x? by adding d times (85) to (86)
(by Property 1.5), which replaces (86) with

2dx — 3y* — dy® — 2y. (87)

Setting this equal to 0 and solving for x when d # 0 gives

_ L2 a3
x—zd(Sy +dy® + 2y).

Substituting this expression for x in (85) gives
1

E Y+ + ) -y -y

When this is simplified, two is the least degree of a nonzero term for
d #+1. Thus, (85) and (87) intersect twice at the origin for d not equal
to 0, 1, or —1 (by interchanging x and y in Theorem 1.11).

In short, for infinitely many values of d, (84) intersects F twice at
the one singular point of F. Then, because F has degree 3, it has class
3(2) — 2 =4, by Theorem 16.10. As noted after (79), this shows that (79)
is the dual of (72).

In Theorem 16.10, when the curve F' is nonsingular in the complex
projective plane, its dual has degree n(n — 1). Taking n = 3 shows that a
nonsingular, irreducible cubic over the real numbers has a dual of de-
gree 3(2) = 6: such cubics remain nonsingular over the complex num-
bers because their standard forms (14) and (15) of §8 do (by Theorem
8.2 over the complex numbers). Taking n = 2 shows that a conic has a
dual of degree 2(1) = 2, in agreement with Theorem 7.4.

We must still prove Theorem 16.1. A nonconstant polynomial in any
number of variables is irreducible if it is not the product of two noncon-
stant polynomials. Every nonconstant polynomial factors as a product of
irreducible polynomials. The next two theorems are special cases involv-
ing three variables of the result that such factorizations are unique. We
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know this result for polynomials in two variables over the complex num-
bers, since Theorem 15.7 applies to the homogenizations.

Theorem 16.11 is a version of Gauss’'s Lemma, a standard result in ab-
stract algebra. We continue to work over the real numbers except where
we state otherwise.

Theorem 16.11

Let f(u,w,x) and g(u, w,x) be polynomials in indeterminates u, w, and x,
and let b(u, w) be an irreducible polynomial in u and w. If neither f(u,w, x)
nor g(u, w, x) has b(u, w) as a factor, then neither does f(u,w, x)g(u, w, x).

Proof
Collecting terms by powers of x gives

flu, w, x) gcuw and glu, w, x) Eduw

for polynomials ¢; and d; in u and w. Because neither f nor g has b(u, w)
as a factor, we can let k and [ be the smallest integers such that ci(u, w)
and d;(u, w) do not have b(u, w) as a factor over the real numbers. Over
the complex numbers, neither ci(u, w) nor d;(u, w) has an irreducible
factor in common with b(u, w) (by Theorem 11.9), and so neither does
cr(uw, w)di(u,w) (by Theorem 15.7 applied to the homogenizations).
Thus, b(u, w) is not a factor of ci(u, w)d;(u, w).
We write

f(u> w, X)g<u; w, X) = Z 8i<u: w)xi (88>

for polynomials e; in u and w. The coefficient e, i(u, w) of x ! is

cxdy + cr—1di + Cradio + - -
+ Crp1dion + Cryadio + - -
Because b is a factor of ¢k_1,...,¢q and d;_1,...,do, it is not a factor of
exy: if it were, then it would be a factor of
€kl — Ck—1d141 — Ck—adiy2 — -+
— Crp1di—1 — Cry2di—p — + -+ = Crdl,

contradicting the previous paragraph. It follows from (88) that b(u, w) is
not a factor of fg. U

Applying the previous theorem repeatedly gives another special case
not of the result that polynomials factor uniquely.

Theorem 16.12

Let p(u,w,x) and f(u,w,x) be polynomials in indeterminates u, w, and x,
and let b(u, w) be a nonzero polynomial that does not involve x. If f is irre-
ducible and a factor of bp, then it is a factor of b or p.
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Proof
If b is a nonzero constant, then the hypothesis that f is a factor of bp
implies that f is a factor of p. Thus, we can assume that b has positive
degree.

Suppose that b is irreducible. We are given that

b(u, w)p(u, w,x) = f(u, w, x)g(u, w, x) (89)

for a polynomial g(u, w, x). Theorem 16.11 implies that b is a factor of ei-
ther f or g. If b is a factor of f, then b and f are equal up to a constant
factor (since they are irreducible). If b is a factor of g, we have

glu, w, x) = blu, w)s(u, w, x)

for a polynomial s(u,w, x). Substituting bs for g in (89) gives bp = fbs,
and so b(p — fs) = 0. Tt follows that p — fs = 0: if not, multiplying the
terms of b(u,w) and p — fs whose degrees in w are as large as possible
would give nonzero terms of b(p — fs5). We now have p = fs, and so f is
a factor of p.

In general, any nonzero polynomial b(u,w) of positive degree factors
as a product of irreducible polynomials b;(u, w), ..., bx(u, w). Because f
is a factor of bp = by - - - by p, it is a constant multiple of b; or a factor of
by -+ - bxp, by the last paragraph. If f is a factor of b, - - - bxp, it is a con-
stant multiple of b, or a factor of b3 - - - bxp, by the last paragraph. Con-
tinuing in this way shows that f is a constant multiple of one of the b;
or a factor of p, and so f is a factor of b or p. O

We can now prove Theorem 16.1 by adapting the proof of Theorem
15.16. Let p(u,w, x) and g(u, w, x) be polynomials that have no common
factors of positive degree. We want to write

plu, w, x)d(u, w, x) + q(u, w, x)e(u, w, x) = r(u, w) (90)

for polynomials d, e, and r, where r is nonzero and does not involve x.

If p is zero, then g is a nonzero constant (since p and g have no com-
mon factors of positive degree), and (90) holds ford=¢e¢=1 and r = q.
Thus, we can assume that p is nonzero, and so it has degree s in x for
an integer s > 0. Likewise, we can assume that g is nonzero and has de-
gree t in x for an integer t > 0. We can assume that s > t (by interchang-
ing p and g, if necessary).

By factoring out of g(u, w, x) a polynomial h(u, w) that does not involve
x and has the largest possible degree, we can write

q(u7 w) X) = q*<u) w7 X)h<u) w))

where x appears in every nonconstant factor of g*(u, w, x). Because g has
no factors of positive degree in common with p, neither does g*. If we
prove that there are polynomials d*(u, w, x) and e*(u, w, x) and a nonzero
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polynomial r*(u, w) not involving x such that
plu,w, x)d"(u, w,x) + q" (u, w, x)e*(u, w, x) = r*(u, w),

multiplying this equation by h(u, w) gives (90) for d = d*h, e = e*, and
r =r*h. Thus, we can replace g with g* and assume that x appears in
every nonconstant factor of g.

Let a(u, w) be the coefficient of x% in p(u,w,x), and let b(u,w) be
the coefficient of x' in g(u, w,x). Because neither b(u, w) nor p(u,w,x)
has an irreducible factor in common with gq(u,w,x), neither does
plu, w, x)b(u, w), by Theorem 16.12. It follows that

p(u,w, x) = plu, w, x)b(u, w) — q(u, w, x)a(u, w)x>" (91)

has no factor of positive degree in common with g(u, w,x). If we can
write

pr(u, w, X)dy (u, w, %) + g(u, w, x)er (u, w, x) = r(u, w)

for polynomials d, e;, and r such that r is nonzero and does not involve
x, using (91) to substitute for p; shows that

(pb — qax>")dy +ge, = .
Rewriting this equation as
p(bdy) + qle; —ax*"'dy) =

gives (90) for d = bd, and e = ¢; — ax*~'d,. Thus, we can replace p with
p1, where p; either is zero or has a smaller degree in x than p does (since
x® has the same coefficient a(u, w)b(u, w) in both terms on the right of
(91)).

We apply the last two paragraphs repeatedly, reducing the degree of p
or q in x each time. We continue until p or g becomes zero and we are
done by the paragraph after (90). This completes the proof of Theorem
16.1.

Exercises

16.1. Each part of this exercise gives a curve f(x, y) = 0 of degree at least two.
Show that f is irreducible and has infinitely many points. Find the dual
glu, w) = 0 by eliminating x and y from (7)-(9) to get an equation in u
and w of minimal degree (as in the discussions of (10)-(15) and (72)-
(79)) and checking either that the equation is irreducible or that it has de-
gree equal to the class of f (as in the discussion of (80)-(87)).

(a) y=a () y
(c) 3y?=2x3-1. (d) y? —x
() ¥*+y*=1. (f) xy=x° 1
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16.2.

16.3.

16.4.

16.5.

16.6.

16.7.

(g) xy?=1-x% (h) 4xy = x* —1.
(i) x*y?=2x+1 (G) **y?=1-y%
(k) »®*+y*+1=0. 1) x*+y*=1
(m) 4y® =3(x*+1)% (n) y==x3—x%
(o) y==x*—x% (p) y® =3x>+3x

For each part of Exercise 16.1, find the four equations in (59) and (60) that
express u and w in terms of x and y and express x and y in terms of u and
w. (These equations match up all but finitely many points of f(x, y) =0
and g(u, w) = 0 as in Theorem 16.6(iii). For example, (61) gives the four
desired equations for (10) and (49).)

For each part of Exercise 16.1, check as follows that f(x, y) = 0 is the dual
of g(u,w) = 0: eliminate u and w from (50)-(52) to get the equation
f(x, y) = 0 (as in the discussion of (53)-(58)), in agreement with Theorem
16.6(i).

Let F be an irreducible curve that has degree n > 3, contains infinitely
many points, and is nonsingular over the complex numbers. If F has class
m, prove that m > n. Deduce that the dual of F is singular over the com-
plex numbers.

Prove that the polar of any point with respect to a conic is a line.
(Hint: Why do Theorem 16.7 and the discussion after Theorem 7.5
imply that the polar is nonzero?)

Let P and Q be points that are not necessarily distinct, and consider their
polars with respect to a conic. Prove that the polar of P contains Q if and
only if the polar of Q contains P.

(Hint: One possible approach is to use (62) and direct computation to
evaluate polars with respect to a conic given by (1) of Section 5.)

Define harmonic conjugates as in Exercise 4.25. Consider the following
result (Figure 16.1):

Theorem
Let P be a point that does not lie on a conic K. Then there is a line [ that has the
following properties:

Figure 16.1
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16.8.

16.9.
16.10.

16.11.

16.12.

IV. Parametrizing Curves

(i) A point A of K lies on 1 if and only if the tangent at A contains P.
(i) For every pair of points B and C of K collinear with P, | contains the
point S where the tangents at B and C intersect.
(iii) For any two pairs B, C and D, E of points of K collinear with P, | contains
the points T = BD N CE and U = BE n CD.
(iv) For every pair of points B and C of K collinear with P, 1 contains the
harmonic conjugate V of P with respect to B and C.

Prove this theorem by taking I to be the polar of P with respect to K and
using Theorem 16.7, Exercises 16.5, 16.6, 5.5, and 4.25 and the discussion
after Theorem 7.5.

State the version of the theorem in Exercise 16.7 that holds in the Eucli-
dean plane when P lies at infinity. Use Exercise 4.26 to state the result in
terms of midpoints instead of harmonic conjugates.

Deduce the theorems in Exercise 7.2 from Exercise 16.7.

Define harmonic conjugates as in Exercise 4.25. Let A, B, C, D be four

points on a conic K. Let E, F, G be the points where AB intersects tan C,

tan D, CD, respectively.

(a) If E # F, prove that G has the same harmonic conjugate with respect
to A and B as with respect to E and F'.

(Hint: One approach is to deduce from Exercise 3.12 that tan C and

tan D intersect at a point collinear with the harmonic conjugates of G
with respect to E and F' and with respect to C and D. Conclude from
Exercise 16.7 that the polar of G with respect to K intersects line AB at
a unique point that is the harmonic conjugate of G both with respect
to A and B and with respect to E and F.)

(b) If E=F, deduce from Exercise 16.7 that G is the harmonic conjugate
of E with respect to A and B. Illustrate this result.

In the Euclidean plane, let A and B be two points on a hyperbola such that
line AB does not contain the point of intersection of the asymptotes. De-
duce from Exercises 16.10 and 4.26 that line AB intersects the asymptotes
at two points E and F that have the same midpoint M as A and B (Figure
16.2).

Figure 16.2

Define harmonic conjugates as in Exercise 4.25. Prove the following
result:

Butterfly Theorem

Let A, B, C, D be four points on a conic K. Set P = AB N CD, and let n be a line
through P that does not contain any of the points A-D. Assume that n inter-
sects K at two points G and H. Set E = ACnn and F = BD nn.
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16.13.

16.14.

16.15.

16.16.

16.17.

16.18.

Figure 16.3

(i) IfE # F, then P has the same harmonic conjugate with respect to G and H
as with respect to E and F.
(ii) If E = F, then E is the harmonic conjugate of P with respect to G and H.

(Figure 16.3 illustrates part (i). We can prove part (i) by deducing from
Exercise 3.12 that AC n BD is collinear with AD n BC and the harmonic
conjugate of P with respect to E and F. It follows from Exercise 16.7 that
the polar of P intersects n at a unique point Q that is the harmonic conju-
gate of P both with respect to G and H and with respect to E and F. Part
(ii) follows directly from Exercise 16.7.)

State the version of the Butterfly Theorem in Exercise 16.12 that holds in
the Euclidean plane in the following cases. Use Exercise 4.26 to state your
results in terms of midpoints instead of harmonic conjugates. Illustrate
parts (i) and (ii) of each version with figures in the Euclidean plane.

(a) P is the only point at infinity named.

(b) CD is the line at infinity.

Consider the polars of points with respect to a conic K. Prove that the
polar of a point of K is the tangent at that point.

Consider the polars of points with respect to a conic. Prove that every line
of the real projective plane is the polar of exactly one point. (See Exercises
16.5 and 16.6.)

Let P be a point, and let F be a curve of positive degree. Prove that P lies
on its polar with respect to F if and only if P lies on F. (See (21) of §12 and
(62) of this section.)

Consider the polar of a point P with respect to a curve F. Prove that the
polar is the zero polynomial if and only if F either is constant or factors
over the complex numbers as a product of lines through P.

(Hint: One approach is to evaluate (62) when (gq,r,s) is the origin
(0,0,1) and F is given by (3) of §3. Apply Theorem 16.8 and the discussion
before Theorem 11.3.)

Let F' be a curve that has degree n > 1 and is nonsingular at a point P.
Prove that the polar of P with respect to F is a curve of degree n — 1 that
is also nonsingular at P and is tangent to the same line there as F. (See
Theorem 4.7 and the Hint to Exercise 16.17.)
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16.19.

16.20.

16.21.

16.22.

16.23.

16.24.

IV. Parametrizing Curves

Let C be a nonsingular, irreducible cubic. Let P be a point of C that lies on
the tangents at four points R, S, T, U other than P. Prove that no three of
the five points P, R, S, T, U are collinear and that the three points RS N TU,
RT N 8SU, and RU n ST lie on C. Tllustrate this result with a figure.

(Hint: One possible approach is to use Exercise 16.18 and Theorems
16.7, 4.5, 4.11, 5.1, and 5.9 to show that the polar of P with respect to C is
a conic that intersects C once at each of the points R, S, T, U and twice at
P. We can then apply the theorem in Exercise 10.6 with E, F, G, H, W, X
equaltoR, S, P, P, T, U, respectively. Exercises 8.5 and 9.9 contain related
results.)

In the notation of Exercise 16.19, prove that the tangents at P, RSN TU,
RT nSU, and RU N ST have the same point as their third point of inter-
section with C. Illustrate this result with a figure.

(Hint: To prove that the tangents at P and RS n TU have the same point
as their third points of intersection with C, one possible approach is to
take the points E, F, G, H in Theorem 9.6 to be R, R, S, S, respectively.)

Let P be a flex of an irreducible cubic C. Prove that the polar of P with re-
spect to C is a homogeneous polynomial of degree 2 made up of two
lines—the tangent to C at P and a line that intersects C at any singular
point of C and the points of C other than P whose tangents contain P.
(This result complements Exercises 8.5 and 9.9 and the Hint to Exercise
16.19. One way to establish this result uses (62) for (g,r,s) = (0,1,0) and
Theorems 16.8, 8.1, and 8.2.)

Let F be an irreducible curve of degree n > 2 that has infinitely many
points. Let F have singular points S;, and let S; be a d;-fold point of F, as
defined in Exercise 4.24. If F has class m, prove that

Z di(di—1) <nln—1)—m.

(Hint: Prove that
Is,(F,E) = di(di — 1)

for the polar E of any point with respect to F by reducing to the case
where S; is the origin and then using Exercises 4.23 and 15.18. Then apply
Theorem 16.10.)

Let k(t), I(t), and m(t) be polynomials that are not all constant and do
not have a common factor of positive degree. Define rational curves as
in Exercise 15.23. Prove that there is a rational irreducible curve
F(x, y, z) with parametrization (k, [, m) by applying Theorem 16.1 to poly-
nomials p(x, y,t) and g(x, y, t) equal to xm(t) — k(t) and ym(t) — I(t).

We work in the complex projective plane in all the remaining exercises. We
use the definitions of cusps in Exercise 15.12, nodes in Exercise 15.13, and the
order, index, and branch tangent of a parametrization in Exercise 15.14. We
extend to the complex numbers results on transformations, singular points,
tangent lines, the basic polarity, flexes, duals, and polars.

Let D be a cusp of a curve F. Let P be a point of the complex projective
plane that does not lie on the line that intersects F three times at P. Prove
that the polar of P with respect to F intersects F' three times at D.
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16.25.

16.26.

16.27.

16.28.

(Hint: One approach is to show that o,E(t?, g(t), 1) = 3 for g(t) in (60) of
§15, where E(x, y, z) is the polar of the point (0, 1, 0) with respect to (59) of
§15. Deduce the desired result from Theorems 3.4, 15.9, and 16.8 and Ex-
ercise 15.12.)

Let D be a node of a curve F. Let P be a point of the complex projective
plane that does not lie on either of the two lines that intersect F three
times at D. Prove that the polar of P with respect to F intersects F twice
at D.

(Hint: One approach is to show that E(t, u(t), 1) and E(v(t),t,1) have or-
der 1 for u(t) and v(t) in (62) of §15, where E(x, y,z) is the polar of the
point (1,1, 0) with respect to (61) of §15. Deduce the desired result from
Theorems 3.4, 15.9, and 16.8 and Exercise 15.13.)

Let F' be an irreducible curve of degree at least two that has no singular-
ities except cusps and nodes. If F has order n and class m, x cusps, and 0
nodes, prove that

m=n(n—1)— 3k — 20. (92)

(See Theorem 16.10 and Exercises 16.24 and 16.25. Equation (92) is the
first of the four formulas of Pliicker cited in the History at the start of
this chapter.)

Consider the following result, which uses the notation in the paragraph
before Theorem 16.8.

Theorem

Let F(x,y,z) be a homogeneous polynomial, and let a transformation
(x,y,2) = (¥, y',2") map F to F'(x',y’,z"). Then the transformation takes
the Hessian of F with respect to x, Yy, z to a nonzero constant times the Hessian
of F" with respect to X', y', z'.

Prove this theorem for the transformations in Exercise 3.25(a) and (b).
(For (a), show that (63)-(65) give

(FX>,:F;:’7 (Fy)/:Fy/f: (Fz>,:sz,/:
deduce that
(Fw)' =F}ps (Fyy)' = Fyiyrs (Fy)' = Fyys
(Fe)' =kFl,.,  (Fp)' =kF),,  (Fz)' =kF,,

and derive the desired result. The discussion of (26) of §12 gives the theo-
rem for the transformations in Exercise 3.25(c) and (d). The theorem fol-
lows for all transformations, by Exercise 3.25.)

Let C be a nonsingular cubic, and let H be its Hessian. C has nine flexes
in the complex projective plane (by Exercise 12.24). Prove that the cubics
other than C that contain the nine flexes of C are ¥C + H for all complex
numbers r and that all these cubics have the nine flexes of C as flexes of
their own. Prove that all but four of the cubics rC + H are nonsingular and
that the remaining four are the four triples of lines in Exercise 11.12. (See
the theorem in Exercise 16.27 and Exercises 12.24-12.28.)
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16.29.

16.30.

16.31.

16.32.

16.33.

IV. Parametrizing Curves

Let F be a curve that has tangent line L at a point D, and let H be the Hes-
sian of F.
(a) If Ip(L, F) is finite, prove that

In(H,F) = Ip(L,F) — 2. (93)

(Since D is a flex of F if and only if Ip(L, F) > 3, (93) shows that D is a
flex of F if and only if D lies on H, as in Theorem 12.4. One way to
derive (93) is to use Exercise 15.15(a) and the theorem in Exercise
16.27 to reduce to the case where D is the origin and f(x, y) is given
by (63) of §15. Prove that the power series h(t, q(t)) has order s — 1 for
h(x, y) in (2) of §12, q(t) in (64) of §15, and s in (63) of §15. Then use
(28) of §12 and Exercise 15.15(b).)
(b) If Ip(L, F) = oo, prove that Ip(H, F) = oo.

Let a curve F has a cusp at a point D. Prove that F intersects its Hessian
eight times at D.

(Hint: One approach is to use Exercise 15.12(a) and the theorem in Ex-
ercise 16.27 to reduce to the case where D is the origin and F is given by
(59) of §15. Show that the power series h(t?, q(t)) has order 8 for h(x, y) in
(2) of §12 and ¢(t) in (60) of §15. Then use (28) of §12 and Exercise
15.12(b).)

Let a curve F have a node at a point D. Prove that F' intersects its Hessian
six times at D.

(Hint: One approach is to use Exercise 15.13(a) and the theorem in Ex-
ercise 16.27 to reduce to the case where D is the origin and F is given by
(61) of §15. Show that the power series h(t, u(t)) and h(v(t),t) have order 3
for h(x, y) in (2) of §12 and u(t) and v(t) in (62) of §15. Then use (28) of §12
and Exercise 15.13(b).)

A simple flex of a curve F is a nonsingular point D of F such that F inter-
sects its tangent line at D exactly three times there. (Recall that F inter-
sects its tangent line at any flex at least three times there.)

Let F be an irreducible curve of degree at least two that has no singu-
larities except cusps and nodes and no flexes except simple ones. Let F
have order n, k cusps, ¢ nodes, and i flexes. Prove that

i=3n(n—2)— 8k — 60. (94)
(See Exercises 16.29-16.31 and Theorems 11.5 and 12.4. Equation (94)

is the second of the four formulas of Pliicker cited in the History before
§14. Exercises 16.26 and 16.39 give the other three formulas.)

Let F' be an irreducible curve of degree at least two, and let G be its dual.
Let

(p(6),4(1),1) (95)

be a parametrization of F for power series p(t) and g(t).

(a) Set f(x, y) = F(x, y,1). Prove that f,(p(t),q(t)) is not identically zero.
(Hint: One approach combines the first two sentences of the proof of
Theorem 16.4 with Theorems 15.16 and 10.1.)
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(b) Prove that G(—q’, p’, pq’ — qp’) is identically zero by adapting the der-
ivation of (37) from (30). Use part (a) to deduce the analogue of (37)
from the analogue of (36).

16.34. In the notation of Exercise 16.33, assume that

plt)=a+t’, (96)
qit)y=b+dt" +et"™ ... (97)
for positive integers r and s and complex numbers a, b, d, and e with
e # 0.

(a) Deduce from Exercise 16.33(b) that G has a parametrization

(h(t),1, j(1)) (98)
for power series

h(t)zfdf(rj,_s)eter---, (99)
5(t) :(ad—b)—ka(%ﬂ)ets—i—m (100)

such that multiplying each coordinate of (98) by rt’~! gives the or-
dered triple of power series

(-4, v, pq’ —ap"). (101)

(b) Show that the parametrization of F(x, y, z) in (95)-(97) has order r, in-
dex s, and branch tangent

—dx+y+ (ad —b)z = 0.

Show that the parametrization of G(u, v, w) in (98)-(100) has order s
and branch tangent

au+bv+w = 0. (102)

Show that substituting the power series in (101) for u, v, and w in the
left side of (102) gives a power series of order 2r + s — 1, and deduce
that (98) has index 7.

16.35. Consider the map
(k,1,m) — (Im’" — ml’',mk" —km', kl' — Ik"), (103)

where the left side varies over all triples of power series k(t), I(t), m(t), and

each right side is also a triple of power series.

(a) Prove that the map in (103) takes a power series of the form (95) to
(101).

(b) Let k(t), I(t), m(t), a(t), and f(t) be power series with o.f(t) > 1. Prove
that map in (103) takes

(&) K(6), o £)1(), o £) (1))

to the triple of power series we get by multiplying each coordinate of
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16.36.

16.37.

16.38.

IV. Parametrizing Curves

the right side of (103) by «?. Prove that the map in (103) takes
(k(B(L)), UB(E)), m(B(¢))

to the triple of power series we get by substituting f(t) for ¢ in the right
side of (103) and multiplying the coordinates by §(t).

(In vector terminology, the right side of (103) is the cross product
of the vectors (k,I, m) and (k’,I’,m’).)

Let F be an irreducible curve of degree at least two, and let G be its dual.

(a) Suppose that a parametrization of F has a center that lies in the com-
plex affine plane and a branch tangent that is not vertical. Deduce
from Theorem 15.10 that the parametrization is equivalent to one of
the form in (95)-(97).

(b) If (k,1,m) is a parametrization of F having order r and index s, prove
that there is a parametrization (k*,1*,m*) of G such that multiplying
the coordinates of (k*,1*,m*) by t"! gives the right side of (103).
Prove that (k*,1*,m*) has order s and index r and that the basic polar-
ity interchanges the center of either one of the parametrizations
(k,I,m) and (k*,I*,m*) with the branch tangent of the other. (Hint:
One approach is to interchange variables so that the conditions in (a)
hold and the map (103) is not essentially affected. Then use (a) and
Exercise 16.35 to reduce to the situation in Exercise 16.34.)

(c) Deduce from (b) and Exercise 16.35 that the map

(k,,m) — (k*, 1", m") (104)

from parametrizations of F' to parametrizations of G takes equivalent
parametrizations to equivalent parametrizations.

(d) Use Exercise 16.35 to prove that that map in (104) takes redundant
parametrizations of F to redundant parametrizations of G.

Let curves F and G be as in Exercise 16.33 and let power series p(t), g(t),

h(t), and j(t) be as in Exercise 16.34.

(a) Use the fact that the coordinates of (101) are rt"~! times the coordi-
nates of (98) to deduce that

!

h' =—q and j=—-hp—q. (105)

(b) Use the equations in (105) and the derivative of the second one with
respect to t to deduce that the coordinates of the triple of power series

(j,7 Jh/ - hj’; 7h,)
are the coordinates of (95) multiplied by —h'.

Let F and G be as in Exercise 16.33. Using Theorem 16.6(i) to interchange
the roles of F and G in Exercise 16.36 gives a map

(M4, ) — (h*,i%,j%) (106)

from parametrizations (h, i, j) of G to parametrizations (h*,i*, j*) of F such
that, if (h,1, j) has order s, multiplying the coordinates of (h*,i*, j*) by t57!
gives

(if — ji', jh' — hj', hi’ — ).
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16.39.

(a)

(c)

339

Consider a parametrization of F as in (95)-(97) and the corresponding
parametrization of G in (98)-(100). Deduce from Exercise 16.37(b)
that the map in (106) takes (98) to a parametrization of F equivalent
0 (95). If (95) is reduced, conclude that (98) is also by applying Exer-
cise 16.36(d) with the roles of F and G interchanged.

Conclude from part (a) and Exercise 16.36 that the map in (104)
matches up the equivalence classes of reduced parametrizations of F with
the equivalence classes of reduced parametrizations of G and that the map
in (106) gives the same matching in reverse.

(By Exercise 16.36(b), the basic polarity interchanges the center and
the order of a parametrization on either side of (104) or (106) with the
branch tangent and the index of the parametrization on the other side.
This extends the pairing of points of Fy and G, in Theorem 16.6(iii).)
Show that the envelope of F consists exactly of the branch tangents of the
reduced parametrizations of F.

Let F be an irreducible curve of degree at least two. Assume that neither F
nor its dual G has any singular points except cusps and nodes.

(a)

(b)

Define simple flexes as in Exercise 16.32. Prove that all flexes of F are
simple and that the number of flexes of F is the number of cusps of G.
(See Exercises 15.16, 16.36(b), and 16.38(b).)
A bitangent of F is a line I such that the reduced parametrizations of F
having I as branch tangent form exactly two equivalence classes, these
parametrizations have order one and index one, and parametrizations
in different equivalence classes have different centers.

Prove that the number of bitangents of F' is the number of nodes of
G. If 1 is a line that is the branch tangent of reduced parametrizations
of F that are not equivalent, prove that [ is a bitangent. (See Exercises
15.16, 16.36(b), and 16.38(b).)
Let F have order n, class m, i cusps, d nodes, i flexes, and 7 bitangents.
Prove that

n=m(m-—1) — 3i — 21, (107)
K =3m(m—2)—8i—61 (108)

by using (a) and (b) and Theorem 16.6(i) to apply the first two
Pliicker formulas (92) and (94) to G instead of F.

(Equations (92), (94), (107), and (108) are the four formulas of
Plicker cited in the History before §14. Any three of Plicker’s formu-
las imply the other one and give three independent conditions on the
six quantities n, m, «, J, i, and 7.)
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